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The stagnation of a high Z, high velocity compact toroidal plasma against a
stationary object has been shown computationally to be an efficient radiation
source. To obtain a better understanding of the stagnation process and the
influence of various prestagnation properties on radiation production, the 2 1/2
dimensional radiation magnetohydrodynamic code, MACHZ2, was used to sim-
ulate the stagnation physics. To perform these calculations, a flux-limited
nonequilibrium radiation diffusion model was incorporated into the MACH2
code. In this model the radiation field evolves separatély from the material
components of the fluid and is described by a Plankian distribution at the radi-
ation temperature, Tg. This introduced a dynamic equation for the radiation
field and modifications to both the momentum and electron energy equations.
A flux-limited version of the radiative conductivity was formulated to extend
this model into the optically thin regime. Detailed benchmarking of the radia-
tion diffusion and electron-radiation coupling using a set of radiation MHD
test problems was conducted.

An extensive analysis of a stagnation calculation was carried out for a 10
mg, nominally 1 cm in diameter compact toroid at a velocity of 100 cm/us, or a

directed kinetic energy of 5 MdJ. This calculation indicated that 4.6 MJ of radi-

ix




ation was emitted over a 10 ns period, a high conversion efficiency of directed
kinetic energy into thermal energy and then radiation. The effects of numeri-
cal resolution, radiation boundary conditions, and extent of the computational
domain on the stagnation physics were included in this analysis.

In the stagnation process, radiation production depends on the directed
kinetic energy of the toroid, the conversion of this energy into ion thermal
energy, and the efficiency of the ion-electron and electron-radiation coupling.
An investigation was performed on the influence of magnetic field strength,
toroid velocity, toroid mass, more compact stagnation geometry, and toroid
material on these properties. Overall, a number of trends were observed. With
increasing magnetic field strength, a larger fraction of the initial kinetic
energy of the toroid goes into compressing the magnetic field and the material
compression itself decreases. This results in lower densities and lower conver-
sion efficiencies. In the most extreme case considered, magnetic energy 50% of
the kinetic energy, the radiated yield was 3.2 MJ. With increasing mass, the
total kinetic energy is increased as is the material density. Coupling is
improved, the conversion efficiency rises as does the total radiated energy,
while the photon distribution remain essentially the same. With increasing
velocity, the directed kinetic energy per particle is increased, and the radiated
energy, peak radiated power and distribution of photon energies are higher.

With a more compact geometry, the magnetic field effects compete with the
improved coupling resulting from higher densities and the radiation produc-
tion declines. In moving to a lower Z toroid, the material experiences “burn
through” and the electron-radiation coupling drops significantly as does the
energy spectrum of the produced radiation. The results of this parameter study
indicate that the desired radiated yield, radiated power and photon spectrum

can be constructed by optimizing the various prestagnation quantities.
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CHAPTER 1. INTRODUCTION

In high temperature fluids, such as plasmas, the existence of the radiation
field will often effect the thermodynamic properties of the fluid and its
dynamic evolution. Plasmas not only emit radiation, but they also interact
with surrounding radiation through absorption and scattering. The processes
of absorption and scattering involve exchanges of energy and momentum
between photons and the constituents of the fluid (specifically, the electrons).
It is this coupling between the radiation field and the material which governs
the manner in which radiative properties such as energy density, momentum
density, and stress (i.e., pressure) contribute to the spatial and temporal
development of the fluid. Such contributions are manifest through radiation-
electron energy exchange, radiation pressure, and the continual evolution of
the radiation field. If these radiative properties are significant compared to
the corresponding fluid properties, or if the dominant mode of energy
exchange is through radiation-electron coupling, then the radiation field will
be an important player in the evolution of the fluid. In many instances, mag-
netic fields are also present within the fluid and must be taken into account.
Under such conditions, it is necessary to solve the conservation laws which
describe the evolution of the radiation field simultaneously with the conserva-
tion equations of a magnetized fluid to obtain a complete description of the
fluid physics.

In a dense plasma regime, where the fluid is optically thick to radiation,
the conservation equations for the radiation field can be reduced to a single
evolution equation for the radiation energy density. In this case, the evolution
of the radiation field is accomplished by including one additional equation to a

set of existing MHD equations. Many problems of interest occur in this




regime, particularly in the areas of laboratory plasma physics and plasma
astrophysics. Plasma pinches, imploding liners, compact toroids, thermal arc
jets, and the inertial confinement process are among the laboratory experi-
ments that have applications in the dense plasma regime. In the arena of
astrophysics, such applications include astrophysical jets, the snowplow treat-
ment of supernovae expansion, and‘ accretion discs surrounding young stellar
objects or neutron stars.

The assumptions that arise out of thick fluid conditions and which lead to
the radiation energy equation encompass what is traditionally called the
diffusion approximation. It is the purpose of this dissertation to incorporate a
nonequilibrium diffusion approximation into a 2-1/2 dimensional, nonideal
magnetohydrodynamic (MHD) code, MACH2 [34], and apply this code to labo-
ratory radiating plasmas. Specifically, this code will be used to simulate the
stagnation of a high velocity compact toroid. The stagnation process involves
the compressional evolution of a dense radiating plasma confined by a
complex magnetic field structure. MACH2 has the capabilities necessary to
model this process, including resistive decay of fields and the evolution of all
three vector components of velocity and magnetic field. With the implementa-
tion of the advanced nonequilibrium radiation diffusion treatment, the
MACHZ2 code is able to simulate the dense radiating fluid regime typical of the

compact toroids considered here.




1.1 Radiation Models

The propagation, or transport, of radiation through a material is described
by the radiation transport equation. This equation can be rigorously derived
from a statistical treatment, by forming an evolution equation for the photon
distribution function [1]. The photqn distribution function defines the proba-
ble number density of photons in phase space as determined by three spatial
coordinates,x, two directional coordinates,”, and frequency v (these latter
three variables take the place of momentum). A conservation equation for the
number density of photons is then constructed taking into account the pro-
cesses of emission, absorption, and scattering. This results in what is known
as the transport equation or the photon Boltzmann equation. A general form

of the transport equation is given by [2]

10l (x,t, A, V)

p 5 +A-VI(x,t A,V)

=n(x,tAv) -yt A V) (Xt R V) (1)

where the intensity I is a physically measurable quantity and is related to the
photon distribution function through a factor of chv. Here c refers to the speed
of light, and hv, the photon energy. The terms on the right hand side describe
the emission and absorption properties of the material, respectively, and
include the effects of scattering. The term 1 is defined as the material emissiv-
ity, while y is the opacity or the total absorption coefficient.

The conservation, or evolution, equations for the radiation field are mathe-
matically derived by calculating angular moments of the radiation transport
equation. Taking the zeroth and first order moments of the transport equa-
tion, two moment equations are formed which describe the dynamical evolu-

tion of the radiation field in terms of defined radiation quantities. These




quantities are the radiation energy density E, the radiative flux F, and the
radiation pressure tensor P. When written in component form, the two
moment equations expand to four equations with ten unknown quantities.
Thus, solving the moment equations in terms of the radiation quantities
requires six additional equations, which in effect are closure relations. This
analysis is analogous to the generation of the fluid equations by taking
moments of the Boltzmann equation. In this case, the fluid equations are
closed by equations of state relating the material gas pressure to the material
density and energy and a caloric equation of state.

The closure of the radiation moment equations is typically achieved by
relating the radiation pressure tensor to the radiation energy density. There
are two approaches that are used to determine this relationship. One
approach is to solve the transport equation for the intensity, extracting from it
the relationship between Pj; and E. Methods based on this treatment include
the S-N (Discrete Ordinate) Method [1], the P-N (Spherical Harmonic) Method
[1], and the Method of Characteristics (Variable Eddington Method) [3]. Under
physical conditions where the material is optically thick, the radiation field is
nearly isotropic, and the pressure tensor is reduced to a scalar form in which
P=1/3 E [2,4]. The moment equations are then closed with this simple rela-
tionship instead. This approach is valid in an opaque medium and is com-
monly referred to as the diffusion approximation.

Solving the transport equation is based on the assumption that problems
of interest occur on fluid flow time scales as opposed to radiation flow time
scales. In other words, the radiation field at any position is assumed to adjust
instantaneously to changes in surrounding material conditions. When solved
by a computer code, the fluid is thus considered to be in a particular state at

each calculational timestep and the static transfer equation is solved to com-




pute the radiation field propagating through the material at that instant.
Depending on the method used and the level of accuracy desired, this often
calls for large amounts of computational memory and time. The numerical
solution to the transport equation requires not only spatial resolution, but
also angular resolution, making it necessary to have an additional radiation
grid and database containing pertinent information for each grid point (i.e.,
angular coordinates, material properties, photon energy distributions). Once
the radiation field is determined for each grid point, it must then be used to
calculate the radiation variables needed to close the two dynamic moment
equations. Clearly, this calls for an extensive database and a substantial
increase in calculations, making these methods computationally difficult and
expensive.

There are a number of ways in which these stringent computational
requirements are reduced, resulting in obtainable and affordable solutions to
the transfer equation. One choice is to assume the material is in local thermo-
dynamic equilibrium (LTE) [3] so that opacities and emissivities are functions
of the local material properties as defined statistically by the Boltzmann and
Saha equations. Other choices include decreasing the number of transport
equations by utilizing as few photon energy and angular distributions groups
as possible or using coordinate-dependent transfer equation solvers [1]. In all
instances, accuracy is sacrificed for efficiency.

The underlying premise of the diffusion approximation is that the material
is optically thick to radiation. This implies that the radiation pressure tensor
can be written a priori as an isotropic scalar quantity with P=1/3 E, providing
the necessary closure relationship. Applying this along with the necessary
approximations (associated with the diffusion approximation) to the moment

equations, a single dynamic evolution equation for the radiation field is pro-




duced. By reducing the moment and transport equations to this one equation,
reasonable memory requirements and computational times can be obtained
compared to the transport method. In this instance, there is only one addi-
tional equation to be solved as opposed to three, and the equation does not
require a radiation grid on which to perform calculations.

Less severe computational requirements make this approximation an
appealing approach to closing the moment equations. Moreover, there are few
restrictions on the form of the radiation field allowing flexibility in the distri-
bution of radiation being transported and its relationship to the local fluid. In
particular, the radiation field does not have to be in equilibrium with the
material, a situation which may arise when the radiation field varies too rap-
idly for the material to compensate instantaneously or when the material is
driven through hydrodynamic processes faster than it can relax radiatively.
This latter model is often denoted as the nonequilibrium radiation diffusion
approximation [2].

By its very definition, the diffusion approximation neglects any anisotropic
effects in the radiation field which can result in excessive radiation energy
transport. However, smooth, qualitative corrections to the radiative flux can
be used where such effects may dominate the physics. Specifically, in regimes
where the photon mean free path becomes comparable to a characteristic
dimension of interest (i.e., a defined region of flow), the overprediction of
energy transport is compensated for by introducing a flux-limiter. Based on
this and the properties described above, a flux-limited form of the nonequilib-
rium diffusion approximation is preferable to the transport closure method for

problems associated with dense plasma configurations of interest.




1.2 Compact Toroid Stagnation

The concept of a compact toroid was first introduced by Hans Alfven in
1958 [5]. It is a toroidal plasma confinement scheme which maintains a high-
density plasma within a compact ring structure by a strong magnetic field. In
general such configurations appear to be highly stable against many plasma
instabilities and are conducive to plasma confinement on dynamic timescales.
Compact toroids have their roots in fusion technology, where their compact
nature and confinement capabilities provide a number of advantages over tra-
ditional confinement schemes [6,7]. Because of these properties, they have
also been proposed for a variety of other applications [8].

Compact toroids encompass FRC (field-reversed configuration) [6], RFP
(reverse-field pinch) [6], and spheromak [7] magnetic field configurations. Of
particular interest is the spheromak class in which the magnetic field struc-
ture is self contained and is comprised of both toroidal and poloidal field com-
ponents (See Figure 1.1). The combination of fields results in magnetic shear,
and produces a plasma configuration stable to acceleration-driven instabilities
such as the Rayleigh Taylor instability [9]. Stability permits the acceleration of
the confined plasma to high velocities and hence high directed kinetic energies.
Compact toroids can also be compressed, a property that is advantageous for
increasing power densities and energy coupling efficiencies between driver and
recipient toroid. These factors can lead to applications requiring high energy
densities and include such possibilities as an accelerating charge-neutral ion
beam, a photon or neutron source, plasma flow switch, microwave compressor,
inertial fusion driver, and a fuel and/or heating source of fusion reactors. For
the purpose of this dissertation, the term compact toroid will denote the spher-

omak class of compact toroids associated with such applications.
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One application, which is under investigation at the Phillips Laboratory,
uses the compact toroid as a radiation source that may be capable of emitting
photons up through the 100 keV energy range. Such a source would aid in
testing the hardness of electronics and other structures to harsh radiation
environments. There are a number of devices that are currently used as radia-
tion sources at the 1 to 3 keV level. Among these are the classic Z-pinch, the
wire or fiber pinch, and the imploding liner. The possible advantage of the
compact toroid is the extension of the photon energy range to 10 keV and
higher.

The classic Z-pinch, the wire pinch, and the fiber pinch are physical pro-
cesses which involve the collapse of a column of plasma on axis [11]. Typically
a plasma column is formed through the ionization of a gas column or an
injected gas puff. The application of a voltage difference across the ends of the
column produces an axial current, which in turn, creates a toroidal magnetic
field. The current and the induced field then interact producing a J x B com-
pressional force exterior to the plasma column. When this compressional force
is on the order of the plasma particle pressure, nkT, the plasma undergoes a
quasistatic compression, commonly referred to as an equilibrium pinch or a
Bennet pinch. When the compressional force is much larger than the pressure
forces, the plasma rapidly collapses inward towards its axis in a dynamic
pinch. During collapse, a significant fraction of the stored electric energy of
the driving system is converted into kinetic energy associated with the implo-
sion velocity; upon impact on axis, the kinetic energy is converted into mate-
rial internal energy and the plasma is thermalized. Observations indicate that
the resulting radiation spectrum is limited to a continuum corresponding to
plasma temperatures on the order of 1 keV and K shell line radiation of a few

keV indicative of the plasma composition [7].




While undergoing compression, some of the directed kinetic energy of the
plasma column is converted into internal compressional heating of particles.
This is accompanied by ochmic heating. Both compressional and ochmic heating
of the plasma is necessary to produce a radiation source with photon energies
in the x-ray regime. Because this heating occurs throughout the implosion
process, the plasma loses specific internal energy via radiation on an implo-
sion timescale. Thus at maximum compression, the plasma is cooler than it
would have been if it had not been able to radiate. This lowers the energy
spectrum. In this case, obtaining a higher energy spectrum requires compres-
sion to even higher densities or keeping radiation losses prior to impact on
axis as low as possible. Compression to higher densities can be achieved by
using smaller radius wire and fiber pinches. For a given current, the compres-
sional magnetic field increases as 1/r, making the imploding force large
enough to collapse to even smaller radii and larger densities.

Regardless of their preionization configuration, standard pinches based on
the implosion of plasma columns partition their energy during compression
between kinetic, internal, and radiation energies. To keep the coupling
between the kinetic and the internal energy of the plasma at a minimum
throughout most of the collapse, and hence radiative losses at a minimum,
imploding liners are used. Imploding liners are dynamic pinches involving the
compression of an annular plasma as opposed to a filled column of plasma.
They usually take the form of foils, wires, or annular gas puffs. Although the
processes involved in initial ionization and implosion dynamics are essentially
the same as that of standard pinches, imploding liners are able to obtain large
kinetic energies with little internal energy conversion. As a result, they pro-
vide an energy store which efficiently couples to the plasma during compres-

sion. For a range of kinetic energies, these systems can then produce a higher
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energy spectrum of photon emission.

In terms of radiation production, the compact toroid has some advantages
over these contemporary radiation sources. Like the imploding liner, the com-
pact toroid is an efficient energy store which couples to the plasma primarily
during its compression. However, where liners are limited to velocities on the
order of tens of cm/jis in order to avoid Rayleigh Taylor instabilities [7], com-
pact toroids have been experimentally produced with velocities in the hun-
dreds of cm/ps regime. It is these higher specific directed kinetic energies that
provide an access to even higher photon energies.

If the particle density is sufficiently large, a high-Z compact toroid can pro-
duce keV range radiation by colliding with a target. The collision and the asso-
ciated physical processes is often referred to as stagnation. For applications of
current interest, this target is a wall and the compact toroid has a directed
kinetic energy on the order of a few MdJ. During the stagnation, the compact
toroid collides against the wall, first compressing and then expanding outward
from the target. At these energies, the compression is a supersonic process.
Thus, the initial compression will produce a shock wave at the toroid-wall
interface, heating the ion constituents of the toroid. The ions in turn couple
with the electrons which then couple with the radiation field. If the shock
heating of the ions is an efficient process and the ion-electron and electron-
photon coupling time scales are small compared to the stagnation time, the
compact toroid will radiate via bound-bound, free-bound and free-free radia-
tion. The level of radiation production is essentially determined by the cou-
pling efficiency and the shock strength which depend upon such parameters
as the directed velocity, material density, and magnetic field strength. The role
that such parameters play in the stagnation process and consequent radiation

production widely varies and is of general interest.
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Previous work on the compact toroid stagnation process is limited to a set
of computational simulations performed by M. Gee, et. al. [12,13] at the
Lawrence Livermore National Laboratory. These calculations use a one-
dimensional slab geometry to model the stagnation of a uniform density,
multi-MJ directed kinetic energy xenon plasma. One component of the mag-
netic field is used in these calculations, the toroidal component, which has an
initial uniform magnitude. Material properties are based on a range of atomic
physics models and the radiation treatment is flux-limited multigroup diffu-
sion. Parameter studies with a 5 MJ kinetic energy toroid include (1) calcula-
tions using LTE, non-LTE average atom model and Detailed Configuration
Accounting (DCA) atomic physics, (2) DCA calculations with and without
magnetic field, and (3) calculations with a perfectly conducting target and a
copper target.

Numerical simulations assist in the understanding of the physics of the
stagnation process and provide clues concerning the ability of this process to
produce an effective radiator. As indicated above, prior analysis has focused
on atomic physics and radiation transport with little emphasis on the mag-
netic field structure. However, compact toroids consist of a complex three
dimensional magnetic field structure which should be taken into account if the
physics is to be modelled properly. During stagnation, the magnetic fields are
compressed along with the material, and an increase in magnetic pressure is
observed in the stagnation region. As a result, some of the initial kinetic
energy must be partitioned into compressing against the magnetic pressure.
Clearly, this effects the radiation production.

With the nonequilibrium radiation diffusion approximation in the MACH2
code, the stagnation process is a natural choice for an application. MACH2 is

equipped to model complicated field structures and uses all three components
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of vector quantities such as velocity and magnetic field. A survey of the litera-

ture indicates that MACH2 is the only 2 -1/2 dimensional MHD code which
can handle all three field components in complex geometries with LTE atomic
physics and radiation. In this case, the MACH2 calculations would provide a
sophisticated treatment of magnetic fields and a somewhat simplified treat-
ment of the atomic physics in contrast to the calculations of M. Gee, et. al,.
Furthermore, a number of stagnation experiments are just beginning with the
MARAUDER effort at the Phillips Laboratory and will provide, in the near
future, actual experimental data to compare with numerical results. For these
reasons, this new radiation code development will first be used to investigate

the compact toroid stagnation process.
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1.3 Present Study

The remainder of this dissertation is concerned with the development of
the nonequilibrium radiation diffusion approximation, its implementation
into the code MACH2, the subsequent benchmarking of the code, and the
application of this code to the radiation production of the stagnating compact
toroid. In Chapter 2, the derivation of the nonequilibrium radiation diffusion
approximation is detailed starting from a general form of the moment equa-
tions and continuing through the steps leading to the final energy equation
used here. Chapter 3 addresses the incorporation of this radiation treatment
into MACH2, including additional terms added to the MHD equations and the
atomic physics available in MACH2. A description of the MARAUDER com-
pact toroid experiment at the Phillips Laboratory upon which the stagnation
application is based is found in Chapter 4. Chapter 5 covers the testing of the
radiation algorithms by benchmarking with analytic solutions and other
numerically known solutions. Chapter 6 then discusses the results of a
detailed analysis and parameter study performed on the stagnation process
using the nonequilibrium radiation diffusion approximation. Finally, in Chap-
ter 7, a summary and conclusions are presented along with thoughts for

future work.
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CHAPTER 2. THE NONEQUILIBRIUM RADIATION
DIFFUSION APPROXIMATION -

The radiation moment equations together with the material conservation
laws define the equations of radiation hydrodynamics [14]. These equations
may be written in a variety of forms, depending on the chosen reference frame
and the manner in which one treats the radiation-material coupling. The
choice of reference frame is often dictated by the physics to be modelled along
with computational and physical simplicity. For the diffusion regime, the
equations are almost always expressed in the comoving reference frame where
the material is instantaneously at rest. In the relativistic sense, this frame is
the proper frame; material properties are isotropic and are defined on a micro-
scopic level from thermodynamics and statistical mechanics.

With the derivation of the radiation transport equation in the comoving
frame, O(v/c) and higher frame-dependent terms surface and propagate
through to the moment equations of the radiating fluid. These terms are the
result of a Lorentz transformation of radiation quantities and derivatives
from an Eulerian frame to a comoving frame and depend upon the fluid veloc-
ity v and the speed of light, c. Although the higher order terms are negligible
and can be ignored for small v/c, the terms of O(v/c) can become important
in certain physical regimes and may actually dominate over all other terms in
the equations [2]. To account for such contributions, it is necessary to make an
order of magnitude comparison between terms in each equation in all physical
regimes, keeping those O(v/c) terms that play a relevant role in any given
regime. The resulting transport and moment equations are referred to as the
first order comoving frame transport and moment equations.

The derivation of the comoving frame transport equation, the subsequent
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moment equations, and the first order analysis of these equations can be
found in the literature. The equations are derived in either a covariant form
which is then used to extract specific coordinate and symmetry dependent
equations (Buchler [15], Muiner and Weaver [16]), or in a form which is
already based on a particular geometry (Mihalas and Mihalas [2], Castor
[17]). In this chapter, the comoving frame moment equations for cylindrical
geometry with azimuthal symmetry are used as a starting point from which to

derive a general form of the radiation diffusion equation.
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2.1 The Moment Equations in Cylindrical Coordinates

The MACH2 code has the capability to simulate physical problems in
either cylindrical or planar geometry. It is therefore beneficial to write the
moment equations in either cylindrical or cartesian coordinates. Because of
their initial complexity, the moment equations in cylindrical geometry will be
discussed in this section. From Muiner and Weaver [16], the radiation energy
and momentum equations in cylindrical coordinates (with azimuthal symme-

try in which ds/00 = 0 for any scalar field s) are:

energy equation:
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z-component of the momentum equation:
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The quantities E,, F,, P,, and Q,, are the zeroth, first, second, and third
moments, respectively, of the integrated intensity over solid angle. E, F,, and
P, physically correspond to the comoving radiation energy density, flux, and
stress tensor. The variables 1, and y, define the comoving material emissivity
and absorption coefficient, while v and a are the fluid velocity and accelera-
tion. The radiation variables are measured in the comoving frame as denoted
by the subscript, and are frequency dependent.

The underlying stipulation of the diffusion approximation is that the pho-
ton mean free path, A, must be much less than some characteristic length, 1,
of the physical system in which it interacts. This implies that on the scale of /,
the material component of the system appears opaque to radiation. Under
these cbnditions, the photons will be absorbed, emitted, or scattered indepen-
dent of direction, resulting in an isotropic photon distribution. This is desir-
able since isotropy simplifies the radiation equations by forcing the linear
relationship P,=1/3E:

isotropy
I(x,t;A,v) = I(x,t;Vv)
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Then -
E, = [ tv)dQ = I (%, t;v) [dQ = 4nl (%,t;V)

— it _ 1
P, = II (x,2;V) AARAQ = I(x,t;v)j ARdQ = ?I (x,t;v) = ‘gEv

1

3E

or P = ijdv = %J'Evdv =

(Because this simplification is desirable, the diffusion approximation is used
often and quite liberally for many physical applications.)

The assumption of an isotropic radiation field can be maintained even if
material inhomogeneities exist in the system as long as the inhomogeneities
vary slowly on the spatial scale of the system. In general, this is commonly
referred to as the first order diffusion approximation. The inhomogeneity of
the material is then taken into account by allowing it to perturb an isotropic
radiation field. By keeping only the lowest order terms in the momentum
equation, a non zero but small value for the radiation flux emerges which is
independent of angle and related to the gradient of the radiation energy den-
sity. This is introduced into the energy equation as the lowest perturbing term
in the evolution of an isotropic radiation energy distribution.

Although the condition hp «l is a necessary assumption for the diffusion
approximation, it may be insufficient when the fluid is moving. A moving fluid
can modify the photon distribution to such a degree that a breakdown of the
diffusion approximation is possible even if lp «l. This will happen if the fluid
flows rapidly enough to change local material conditions on the scale of a pho-
ton interaction time.

To illustrate this, consider the existence of an isotropic field in a local homeo-
geneous region of dimension /. Within this region, let the material motion be
either non-existent or small compared to the timescale on which the photons

interact with their surroundings. Photons are then re-emitted at essentially
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the same location in which they were absorbed, and the photon distribution is,
as assumed, isotropic. However, if the fluid velocity becomes large enough that
the fluid flow time is comparable to or exceeds the photon-material collision
times, the photon distribution left behind may see a somewhat different phys-
ical environment than it originally had; local material conditions may have
been modified drastically by the fluid flow. Thus, in this simplified picture, the
assumption of isotropy may no longer be valid under certain conditions and
leads to the breakdown of the diffusion approximation. To insure that isotropy
be maintained, it is necessary to also require that the photon interaction time
be much less than the fluid flow time. If this is the case, the photons are able to
adjust quickly enough to the modifications introduced into their local area to
insure an isotropic photon distribution [2].

The criterion just defined is used to obtain the first order diffusion approx-
imation. With tphoton mfp ~)»p/ ¢ and tg,iq flow~l/V, the requirement that the
photon interaction time be much less than the fluid flow time is equivalent to

(kp/c) «l/v or (kp/l) (v/c) « 1. This can be used to reduce the momentum
equation by performing a dimensional analysis of its various components on a
fluid flow time scale. Replacing o/ ot with v/l where v ~v, ~vg is the fluid
flow velocity, o/ dr, 9/ 0z with1/1, the terms in the radiation momentum equa-

tions (3-4) are each in turn proportional to:

lv,  1v .v21 a, 1, an, lv, lv, .ap . 1

(5)

Note that the quantities within a set of brackets in the momentum equa-
tions, (3) and (4), are of the same dimensionality and are regarded as a single
entity in the scaling, as are all terms containing the third moment Q. Compar-

ing terms with like radiation quantities:

20




A A A

F terms: _PV. _pVU. PV .4
0 le le lc’
2
Poterms 2 aé:l:-a—é
c c

Of the F, terms, the first three are negligible compared to the last and may
be dropped. A comparison of the pressure terms show that the time derivative
quantities are found to be O(vz/czv) to the divergence of the pressure tensor
and hence may be ignored. The acceleration terms are of order al/ ¢? and are
also assumed to be small compared to unity. For the purpose of this work, the
terms containing the third moments may be dropped because they vanish
when the momentum equation is integrated over frequency. The terms
remaining from Equations (3) and (4) then give the reduced momentum equa-

tion in the isotropic limit (P = 1/3 E,):

. . 10 E,
r-component : [rar (rE,)) - 7} = ..onz
(6)
z-component : Ea—E—o = —y F?
" 8oz %o o
or FO = “g—i—VE (7)

(A comparison between the radiation moments F, and P, would not be cor-
rect at this time since there is no way of knowing a priori how these quantities
relate to each other as far as dimensionality, and thus magnitude, is con-
cerned.) Using the isotropic prescription P, = 1/3 E,;, it is convenient to rewrite

the energy equation (2) in the following form:

dE 10 ov :l 1 an E v v v
[+] r r r r 2
@ *Eo[;s;‘"’)*az (F)+_+3[ar+7+'a?]
) E, ov, v, dv,
‘E[”o'%“[ﬁ?*?*é‘zﬂ = 4mn, =X, By - ®

21




Here the 0F/ot terms have been dropped since they are of 0(2/¢?) on a fluid
flow time scale and their inclusion leads only to a forced diffusion equation for
a transparent medium [2].

Substituting the result from the reduced momentum equation (7) into the

energy equation (2):

dE, 19 ov’] 190 9 ( ¢ 9E,
‘az‘*Eo[ U‘U“?J a—r['—( CE,) -Ey) |+ (3x =

F_q[avr v, avz} b Eo[av,+?_,+§2]

EIRr = I T b = dmn, —cx B, -

9)
The sum of the quantities in the brackets of the second and fifth terms is the
divergence of the velocity, and the sum of the third and fourth terms is the
divergence of the energy flux, V - (¢/3),) V E,. Condensing terms in brackets

and rewriting in operator form one finds:

9y by v 5oy VE—la[vEV-"]—4 —ey E (10)
gt T3 By, o 33V, votol P T H TR0 -

This can be written in a slightly different fashion using a variation of the con-

tinuity equation, V - v = p d/dt(1/p) and dE/dt = -pE, d/dt(1/p) + d/dt(E/p):

d (E ) d 1 } c
+-{E,- [v, E 1} =V.—VE _+4nn -cyx E_ .
[dt avo dt 3%, ° 0 o0 a1

This is the general form of the radiation energy equation in the diffusion

approximation.
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2.2 The First Order Equilibrium Diffusion Approximation

In the diffusion approximation, material properties and dynamics are such
that the prescription of an isotropic photon distribution is maintained on a
local scale. Photons can travel no more than a few mean free paths before they
are absorbed or scattered and their energy distribution is indicative of the
material temperatures in the surrounding vicinity. If the material tempera-
ture changes slowly over a distance of a few mean free paths, the radiation
distribution at any given point is defined by the local material temperature
through the Plank function [18]. Under these conditions, the radiation field
and the material components of a radiating fluid are said to be in local ther-
mal equilibrium with each other. This leads to the following equilibrium diffu-
sion approximation.

Integrating the energy equation over frequency
d Eo) }_ P c
"[%(p Odt‘ )=V gy Vo ()Y,
0 Mo
+ j [47n_ (v,) —ex, (V) E,(v,))1dv,

=vV.-£ VE +I [47n_(v,) —ex, (v )E, (v ))1dv, .
xR 0

Here x% is the Rosseland mean opacity defined by

oo oo 1
J xo v ) V.E (V ) dV Ixo—('\;'o—)-VEo (VO) de
-1_0 -0
[
jVE o (vo) dvo

Defining a radiation energy density at the material temperature by E = aRT4,
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where ap is Stefan’s constant, the radiation energy equation becomes

3
d aRT4) _ 4aRcT
‘-ﬁ( 5 3 RT4 (= ) 1 VT

(- -]

+ J' [47mn  (v,) —cx, (V,) E,(v)ldv,
(12)

Combining this with the material energy equation (fluid with no magnetic
field)

de B
p[dt+pdt( )+3 ly. KVT:l -£ [4nn (v)) —ex, (V) E, (v )1dv,
(13)

the following law of thermodynamics for the material is obtained:

3
d aRT4) 1 ,ad 1 1 (( 4030’—”) )
-——(e+—-——p + (p+§aRT )dt(p) BV- K+ 3XRP vT|.

(14)

This states that the rate of change of the total (material + radiation) energy
density in a fluid element plus the rate of work done by the total pressure in
the element equals the rate of energy loss by transport to adjacent fluid
elements. Here e is the specific internal energy of the electron fluid and is a
function only of material temperature as described by the equation of state for
a perfect gas e = ¢, T (LTE). The variables p and x correspond to the electron
pressure and the electron thermal conductivity, respectively. The presence of
the radiation field also effects the fluid momentum which is modified through

an additional “pressure” term in the electron momentum equation:[2,14]

p[%-}.ava] =-V(p+%aRT4)+Vg. (15)

Here o is defined as the viscous stress tensor.
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2.3 The Nonequilibrium Diffusion Approximation

The application of the equilibrium diffusion approximation is limited to
physical conditions under which the radiation field and the material are in
local thermal equilibrium. However, problems can arise where the diffusion
approximation is still appropriate, but the radiation field is not in equilibrium
with the material. For example, the photon distribution may be Plankian but
at an effective temperature which differs from the local material temperature.
This can occur if the radiation field originated from a region with other (but
thick) material conditions.

It is possible to treat such problems in the diffusion approximation.To
extend the range of applicability, the form of the radiation field may be relaxed
to an arbitrary spectral distribution (i.e., non-Plankian) and energy density.
Integrating the diffusion energy equation over frequency

P E,(v,)
{p{-}t( o 2 )v 1m0, - VAN A )}dvo

o0

= { V. _3_76_‘;7.).VE0 (v)av, +[x, (v)) [4nB (v, T) —cE, (v )]dv,

0" 0 0

one obtains the nonequilibrium radiation diffusion equation:
p[i(E") d )] V(g VE)+c(x agT*-xzE,)  (16)
dt\ p °dt R 0

where

VE, ©=VE,(v) [x,(v,)B(v,T)dv

io j (V)d Kp =

jB (vo, T)dv
0
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and K is the absorption mean

[E, v )%, (vp)dv,

-0
KE-— B

0

In the above equations, the material is treated as a Plankian emitter (recall
the material is in LTE) defined by the Plank function B (v, T) at the material
temperature, while the existing photon distribution is somewhat arbitrary
(but with no angular dependence) as given by E,(v,).

As a first approximation, it is common to assume that the radiation field is
not strongly out of equilibrium with the material. In this case, the photon dis-
tribution takes on a Plankian form at a specific radiation temperature. The
coefficients KEand X are then set so that § = xp, the Rosseland mean opacity,
and Kp = Kp, the Plankian mean opacity, which are evaluated at the material
temperature and depend solely upon the absorption (photon-material interac-
tions) property of the material. Because they are averages over the entire pho-
ton spectrum, these mean opacities will become an insufficient way to describe
the radiation transport and photon distribution when large fluctuations in the
absorption coefficients are present; the averaging process tends to wash out
physically important features of the opacity spectrum. In such instances, it
would be necessary to write the various radiation quantities over specific fre-
quency integrals, thus solving a set of multigroup diffusion equations. For the
work in this dissertation, the single group treatment to the diffusion approxi-
mation will be used.

As with the equilibrium diffusion approximation, the radiation field pro-
vides an additional influence in the material evolution. Its presence is mani-

fest through a pressure term in the momentum equation and a coupling term

in the electron energy equation (neglecting magnetic field and with all quanti-
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ties measured in the comoving frame):

electron energy equation:

p[%ﬂ?.ve] =-pV-7-V- (<VT) —agex, (T'-E,) (D)

momentum equation:

o _ _ =
p['a_lt)*”'vv] =V (p+3E)+V 5 . (18)

The coupling term in the electron energy equation naturally arises out of a
need to conserve energy between the electron fluid and the radiation field. Its
existence in the radiation energy equation is a consequence of applying the
nonequilibrium diffusion approximation to the O (v/c) moment equations.
This term describes the exchange of energy between the free electron popula-
tion and the radiation field. To maintain energy balance, it must therefore
reside in the electron energy equation.

Although physically evident, the existence of the radiation coupling term
in the electron energy equation also becomes apparent when one performs an
O(v/c) analysis on the comoving frame equations of the radiating fluid. Such
an analysis is actually necessary to maintain an O (v/c) consistency among
all radiation hydrodynamic equations including the dynamical equations of
the fluid. Mihalas and Mihalas [2] carried out an O (v/c) analysis which
reveals the presence of a coupling term in the gas energy equation and also a
radiation pressure gradient term in the Lagrangian momentum equation.
Thus to O (v/c), the inclusion of the radiation energy equation into MACH2
must be accompanied by additional terms in the momentum and electron
energy equations.

The nonequilibrium radiation diffusion approximation can describe a wide

variety of plasma related physics and represents a vast improvement over an
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equilibrium diffusion treatment. Not only does it allow for the possible non-
equilibrium between radiation and material, but, utilizing flux-limiting ideas
described in the next section, it also has the capacity to cover many physical

regimes through which a radiating fluid can dynamically evolve.
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2.4 The Validity of the Diffusion Approximation and Flux-Limited Diffusion

By its very derivation, the diffusion approximation for the evolution of the
radiation field is no longer valid when carried outside a regime where the isot-
ropy of the photon distribution is no longer maintained. In general, this occurs
when the photon mean free path is on the order of or larger than the charac-
teristic size of the system, or when the fluid flow changes the material proper-
ties fast enough that the field cannot keep up with the changes.

Inherent in the diffusion approximation is the definition that photons
always travel a distance of the order of A irrespective of material properties
and without regard to the physically imposed upper bound of the photon free
flight distance cAt. Such negligence can rapidly lead to a misrepresentation of
the radiation physics outside the optically thick regime, the most extreme case
occurring in a transparent medium. The radiative flux predicted by diffusion

theory is (from Equation(7))

E
o VE, -~k (19)

F, = 3"PT

[ 3%

where A, is the photon mean free path and lis the dimension of the physical

system. For a transparent medium, (lp/ l) » 1, forcing

|F1>cE (20)

Physically, this is not possible since it implies that the photons are propagat-
ing through the material unhindered at a speed greater than c:

1
UVp = .Iﬂ = M..c(&) (21)
E-FE E 3l

This causes the diffusion approximation to predict a radiation energy flux

larger than that given for photons in the free streaming limit.
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To overcome the limitations of the diffusion approximation, flux-limiting
capabilities can be introduced into the radiation energy equation [14]. The
idea is to modify the radiative flux term so that in transparent media, the
photon flux becomes the free streaming value cE, while in optically thick
media, the photon flux is the standard c¢/(3y)VE,. Because this is an ad hoc
solution [1] to the problem, its accuracy is not well known. It does however,
produce the correct limits and qualitatively correct behavior in the intermedi-
ate region, although quantitatively it could be seriously wrong in the interme-
diate region.

There are a variety of different approaches that are taken to limit the radi-
ative flux [14,19,20]. The approach taken here is similar to that of Lund [21]

and will be described in the next chapter.
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CHAPTER 3. IMPLEMENTING THE RADIATION ENERGY
EQUATION INTO MACH2

In the previous chapter, the moments of the radiation transport equation
were shown in the diffusion limit to reduce to a modified form of the radiation
energy equation. This energy equation describes the time evolution of the
radiation field in the presence of a fluid. Solved self-consistently with the
dynamical equations of the fluid, the influence of the radiation field on fluid
properties and motion can be treated numerically to some specified level of
accuracy. By incorporating a nonequilibrium radiation energy equation into
the MACH2 code, the role radiation plays in the evolution of a radiating fluid
can thus be addressed.

MACH?2 is a 2 1/2 -dimensional, two temperature, nonideal (resistive dissi-
pation of magnetic fields and thermal conduction) magnetohydrodynamics
(MHD) code which has been utilized to model a variety of laboratory plasma
experiments. The code contains a number of powerful numerical features
including an Arbitrary Lagrangian-Eulerian (ALE) approach to grid motion,
adaptive mesh capabilities, finite spatial volume differencing, and implicit
time differencing of the dynamic fluid equations. It is written in FORTRAN 77
with the CRAY pointer extension and emphasizes clean and modular coding.
The addition of a nonequilibrium radiation treatment into MACH2 was car-
ried out in such a way as to conform to the overall structure of the code,
employing available algorithms when possible and using notation consistent
with that found throughout MACH2. The form of the nonequilibrium radia-
tion diffusion equation reduces to the same physics as the existing emission
and equilibrium diffusion models of MACHZ2, for the physical regimes in
which they are appropriate.
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3.1 The MACH2 Code

The MACH2 code contains the physics needed to model magnetically
embedded plasmas, including resistive diffusion of magnetic fields, thermal
conduction, elastic stresses, a multi-material capacity, and the availability ofa
separate electron and ion fluid temperature treatment. In the absence of radi-
ative processes, the single fluid MHD equations [22] that are solved in

MACHS2 are (SI units with the temperature measured in eV):

mass continuity equation: %—i— +V. (pv) =0, (22)
- - LI FxB+v.5, (29
fluid momentum equation: P[ﬁ +0- VU} =-Vp+JxB+V-G,
. , 3G _ o=
elastic stress equation: pri 2ul-v-Vo, (24)
specific internal energy equation:
de _ = =
p[a—j+v-Ve:] = —pV-5+d-E+V. (xVT), (25)
magnetic field transport equation:
oB - = — - =
9B Y (@xB)-Vx[LVxB)-Vx_1 (TxB) . (26)
ot H, qn
e
These are supplemented by equations of state of the plasma:
thermal equation of state: p=ppT 27
caloric equation of state (perfect gas): e =e(p,T) (28)

and exist in either an analytic form (i.e.,perfect gas) or a pre-generated tabu-

lar form. Here the variables p and v refer to the fluid density and velocity,

respectively, while the material energy is denoted by e. The pressure associ-
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ated with the fluid constituents is broken into two parts, one that is associated
with normal stresses, p, and one that is associated with shear or tangential
surface stresses, the viscous stress tensor, 6. The quantity p in the elastic-
stress equation is called the coefficient of viscosity (or shear modulus) and is
determined from a strength of material model [23]. The transport coefficients
7N and x correspond to the total electric resistivity and the thermal conductiv-
ity; these are determined from an analytic equation or obtained from an equa-
tion of state (EOS) table that is accessed by MACH2. The constant p, is the
permeability of free space, 4 - 10'7, while q, is the magnitude of the electron
charge, and n, is the electron number density. The variables J,E, and B
have their usual meanings of current density, electric field, and magnetic field.

The magnetic field transport equation is the result of combining the MHD
approximation (neglect of the displacement current) to Maxwell’s equations

with Ohm’s law for the moving fluid:

—~ 0B
Maxwell‘s Equations: VXE = ——, Vx

=, (29)

o]
I
=
Q
il

Ohm's Law: E=n-J-0vxB+ (J xB) (30)

n
q.n,

It should be noted that the Hall term, which is ignored in many single fluid
codes, is present in Ohm’s law and the magnetic field transport equation.

The single fluid equations as given above represent a one temperature code
in which the electrons and the ions are assumed to be in equilibrium. MACH2
also allows for a physical state of the fluid in which the electron and ion com-
ponents of the fluid bave not yet equilibrated with each other but have reached

equilibrium within their own species. In otherwords, the ion and electron pop-
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ulations have separate, distinct Maxwellian velocity distributions that are
defined by two separate temperatures, T, and T;. The nonequilibrium nature
of the two fluid components is handled in MACH2 by introducing two separate
energy equations but maintaining a single momentum equation. In this case
the single energy equation is replaced by separate ion and electron energy

equations which are coupled through a collision term [24]:

ion energy equation:

de. _ _
p[é?‘+v-Vei] =-p;V-v+V. (KTiVT)+<I>ie, 31)
electron energy equation:
de, _ R
p[—a—te+v-Vee} =—peV-v+J-E+V-(KTeVTe)+<I>el., (32)
where d’ie = _d)ei = the electron-ion coupling term:
A (33)
dt 1 (1+ 1 )+ 1
b, dtv cy,

The subscripts on the thermodynamic variables refer to the fluid species of
electron or ion. The parameter Cy, is the specific heat for each species, while
A is the electron-ion energy tranéfer collision frequency and dt is the compu-
tational timestep.

As mentioned, tabular values of pressure, energy, electrical resistivities,
and thermal conductivities are available in MACHZ2. These values are
obtained from the standardized, computer based SESAME Equation of State
Library generated and maintained by the T- 4 Group of the Theoretical Divi-
sion at Los Alamos National Laboratory [25]). The library contains data for

over 70 materials and covers a wide range of physical conditions in which a
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local thermodynamic treatment of the fluid is appropriate, utilizing both phys-
ical models and experimental data. Also contained in this library are values of
fractional ionization, Plankian mean opacities and Rosseland mean opacities.

A numerical treatment of the MHD fluid equations involves the conversion
of a set of continuous coupled partial differential equations into a discrete sys-
tem of algebraic “difference” equations defined on a finite grid. In MACH2
finite difference forms of the fluid equations are solved on 2 dimensional grids,
simulating problems having either plane parallel geometry or a cylindrical
geometry with azimuthal symmetry. A physical problem can be decomposed
into one or a number of computational grids, called blocks. In the latter case,
these blocks have the ability to communicate with each other. Each computa-
tional grid is comprised of zones, or cells, with each mesh point of the grid
defining a spatial location. In cartesian coordinates, the grid covers a subset of
the x-y plane, while in cylindrical coordinates, it covers a subset of the r-z
plane. All dependent variables in the fluid equations are described positionally
on the grid, and their evolution is connected to variable conditions in adjacent
cells. In general, physical quantities are considered as being located at either
cell centers or cell vertices (mesh points). Figure 3.1 displays the spatial cen-
tering of various physical quantities in MACH2. For numerical purposes, it is
customary to index grid vertices and cells. Figure 3.2 displays the grid index-
ing notation used in MACH2 for an arbitrary mesh. To account for boundary
conditions and communication between blocks, the calculational mesh is sur-
rounded by a band of ghost cells and vertices.

As noted, out of plane symmetry is assumed in MACH2 calculations. How-
ever, all components of vectors and tensors are included in the calculations
and are permitted to evolve as functions of two spatial coordinates. This has

an advantage over strictly two dimensional codes in which vector and tensor
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Figure 3.1. Centering of the fluid variables in MACH2. In general, the
grid lines need not be parallel to the coordinate directions, and the cell
need not be orthogonal.
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variables are restricted to components in the two spatial coordinates that
span the problem domain. Not only does it permit a more realistic calculation
of field component evolution, but it is also essential for the proper treatment of
many possible wave modes in MHD [3]. Maintaining all components of vectors
in code calculations is often referred to as 2-1/2 dimensional MHD dynamics.

As with all codes that use grids to perform spatial computations, the grid
motion in MACH2 plays an important role in the numerical efficiency of the
simulation. The ALE aspect of the code is an improvement over purely Eule-
rian or purely Lagrangian codes. With ALE, the computational grid has the
ability to remain stationary or to move in either a Lagrangian or a user-
defined fashion with respect to the fluid. Together with the adaptive capability
of the mesh, one has a very powerful numerical tool; the user can dictate the
mode of calculation for a given problem to avoid the adverse aspects which can
arise in either a purely Lagrangian (coordinate distortion) or purely Eulerian
(numerical diffusion) calculation while also obtaining higher resolution in
regions of physical interest.

In MACH2, during each computational cycle, each vertex of the computa-
tional grid may be chosen to remain fixed in the laboratory frame (Eulerian)
or be moved with the fluid by a distance defined by the fluid velocity at that
vertex, g At. An “ideal” mesh may then be constructed which is a smoothed,
orthogonalized, and variable-dependent concentrated version of the updated
grid. The purpose of the ideal mesh is to minimize strong variations in cell
size and area, and to lessen the degree of non-orthogonality in cell internal
angles. It also allows for concentration of cells in regions of interest, i.e.,
where physical variables have the higher density. (Parameters to control the
numerically generated grid are specified.) The computational grid is relaxed
toward the ideal grid by an amount specified by the user. In general, the new
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computational mesh is thus an arbitrarily moving grid which dynamically
adapts to the simulation.

Numerically, the dynamic fluid equations are solved in a self-consistent
manner using an operator split, or time splitting, approach to advance the
equations in time and a finite volume differencing method to perform spatial
differencing of operators. A time splitting scheme partitions each of the evolu-
tion equations into segments, each segment describing the evolution of a quan-
tity based on a specific physical process. For a given process, all segmented
equations pertaining to that process are evaluated and the evolving variables
updated. All updated values are then used to solve successive portions of the
evolution equations pertaining to additional physics.

The non-radiative physical processes which are timesplit in MACH2 are
electron-ion coupling, o Vv, (T,-T,), thermal diffusion, V - x VT, magnetic
resistive diffusion V x (m/n, -V x B), the hall effect Vx (1/ (qene)j xB),
Lagrangian hydrodynamics,V-v, V-8, Vx (0xB), and coordinate system
motion/convective transport,v - V. Here S is the stress tensor whose form is
given in [22). These are performed in the order given, updating the internal
energy each step. A flow chart depicting the order in which these processes are
calculated along with the graphics and data output are shown in Figure 3.3.
The convective transport of all dynamic variables is accomplished by using an
explicitly time differenced, second order Van Leer advection scheme [26]. For
the case of magnetic field transport, a generalized form of the constrained
transport algorithm of Evans and Hawley [28] has also been implemented to
insure flux conservation. The thermal and resistive diffusion along with the
Lagrangian hydrodynamics are implicitly time differenced. This guarantees
the stability of solutions. Although many two dimensional codes perform

implicit diffusion, few calculate the hydrodynamic portions of the fluid equa-
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Figure 3.3. Technical schematic of the physical processes calculated in MACH2.
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tions implicitly. This can be invaluable under conditions in which the fluid
flow is such that unacceptably small values for the computational timestep
would be necessary for an explicit calculation.

The diffusion of the magnetic field and that of the material temperature
employ essentially the same numerical techniques. In general, a multigrid
technique with a relaxation algorithm are together applied to iteratively con-
verge on the solution to the specific diffusion equation [22]. The magnetic field
is diffused into the plasma using either analytic models for resistivity, i.e.,
classical Spitzer (charged particle-particle interaction), or tabular values
obtained from the SESAME tables. MACH2 also provides both analytic mod-
els and tabular values for microturbulent resistivity (wave-plasma interac-
tion) [29]. A similar approach is taken with the thermal conduction; thermal
conductivities are calculated either analytically from a Spitzer model or
extracted from a table.

The spatial derivatives that result from the gradient, divergence, and curl
operators in the conservation equations for the fluid are treated in MACH2
with the finite volume method. The finite volume differencing scheme in
MACH2 utilizes Stoke’s theorem to transform volume integrated quantities
involving difference operators of physical variables (e.g., divergence) to a dif-
ference-free algebraic form involving only the physical variable, cell areas and
cell volumes. Like most differencing schemes, the finite volume differencing
maps one class of centered quantities into another class of centered quanti-
ties, i.e., vertex-centered quantities into cell-centered quantities and vis versa.
This centered differencing is desirable since it maintains a physical interpre-
tation of spatial derivatives and also is second order accurate in truncation
error. To illustrate the finite volume difference method, the finite difference
form for the thermal electron flux xVT, will be developed. Applying Stokes

41




theorem to the integrated flux over a volume element:

[xvT,av = [xT,AdA .
R dR

Here R is the volume over which the flux is calculated, oR is the surface
area which bounds this volume, and # is the unit normal to the surface point-
ing in an outwardly direction. Taking as our volume of interest the three
dimensional cell which is constructed by extending a grid cell an incremental
distance out of the grid plane, and assuming that xVT', and kT f are uniform
over the cell volume and the cell faces, respectively, then

(xVT,), dV;; = Y (T, ) dA;;

faces

or

1
(kVT,) ;= g Y (KTeﬁ)ijdAij,

IJj faces

where the subscripts i,j refer to any arbitrary cell. This is the finite difference
form for the thermal flux. Clearly, this scheme invokes writing the difference
form of the spatial operators as conservation laws, exactly conserving (at least
to roundoff error) the quantities which are based on spatially dependent pro-
cesses. As a result, this scheme is superior to standard finite difference

schemes when the grid deviates from a strictly orthogonal, smooth grid.
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3.2 Adding the Radiation Energy Equation to MACH2

Recall the nonequilibrium radiation energy diffusion equation:

d (E, ] c _
GRS T V(g7 B e eaT By 10

This can be rewritten in a slightly different form to more closely resemble
the specific internal energy equation of MACHZ2. Expanding the first expres-
sion in the equation and rewriting the second expression using a variation of

the continuity equation, d/dt(1/p) = 1/pV - v, the left hand side becomes

dEo)P d 1, d E,dp 1
PE(F +§E°(Tt(6) -(—E(Eo) ) dt E (V-v)

d -1 —
= E(EO) +E0(V-v) +-§EO(V-v) .
Here the contributions attributed to material compression or expansion,
E,(V-v), are written as two separate quantities. The first term denotes the
change in radiation energy density by a finite change in material volume
while the second term corresponds to the work done by the radiation field on
the material through radiation pressure [30]. Parameterizing the radiation
energy density in terms of a radiation temperature T, so that E, = agTg?, the
radiation energy equation can be written as
d 1 —
7 (agTR) + (1+3) (agTg) (VD)
=v. iv (agTR) +ageky (T —Tg)
or
d - 1 —
= (agTR) = 0V (agTR) ~ (1+3) (agTR) V-0
+V. —;—V (aRT?E) +apcK, (T:— T?i) . (34)

g
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This form is very similar to that of the material internal energy Equation
(32). The first and third terms on the right hand side characterize the convec-
tive transport of radiation and the radiation diffusion through the medium,
respectively. These terms, along with the radiation pressure volume work, are
the radiation counterparts to the convection, diffusion, and pdv terms found
in the electron energy equation. The last expression in Equation (34) describes
the exchange of energy between the free electron population and the radiation
field.

From the discussions in Sections 2.3 and 2.4, the presence of the radiation
field in an opaque medium will lead to additional expressions in the fluid
equations. Specifically, the electron energy and momentum equations must be
modified to include the contribution from the radiation field. In MACH2, these

existing equations are altered accordingly:

electron energy equation:

de, _ I
p[_jt_+v.Vee:| = —peV-v+J'E+V- (KTeVTe)'l'd)ei (32)

momentum equation:

p[-?)—lt)+l7-Vl7] = -Vp+JxB+V.o (23)

must be modified to:

electron energy equation:

de
e - - -
p[——+v-Vee] = —peV-v+J-E+V- (KTeVTe) +<I>ei—aRc1cP(T3—T§)

ot
(35)
momentum equation:
O 5.VE] = -V (p+la,Th) +TxB+V-5 (36)
p[—a—t v- v]— (p-éaRR)+><+ -0 .




Here the added pressure term in the momentum equation is often referred to
as the radiation acceleration [14].

With Equations (34), (35), and (36), the three temperature radiation diffu-
sion treatment can be implemented into MACH2. It is important to remember,
however, that this treatment is inappropriate when the diffusion criteria are
no longer met. This can lead to excessive radiation energy transport and
unphysical radiation pressure effects in regions that are optically thin. To cor-
rect this first problem, a flux-limited form of the diffusion equation is needed.
As discussed in Section 2.4, the purpose of a flux-limited diffusion equation is
to provide the proper behavior of the radiation field in the optically thin limit,
where the diffusion approximation is not valid. If formulated properly, it can
also enable a qualitative transition from a thick to thin regime.

The flux-limited version of the diffusion equation that is developed here
involves the modification of the diffusion coefficient ¢/ (BxR) in the following
manner:

c
K.og = VE T (37
E L ARV

(Tabular values of opacity in MACHZ2 are in units that require multiplication
by p to give the correct dimensions of 1/length.) This gives the proper values of
the radiation flux in both thick and thin limits, and permits a smooth transi-
tion between these limits when necessary. The addition of the term |VE|/E to
3xRp enables the radiation energy equation to restrict the speed at which
photons can diffuse through a transparent region to the speed of light. When
the material is thin, the photon mean free path becomes very large and 3y rP
is negligible in comparison to |VE|/E. The flux then becomes proportional to
cE. To insure this result is maintained under conditions in which there is

/
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essentially no gradient in the radiation field, but the radiation is still free
streaming, the 1/ (Al) term was included in the denominator of K od- This
term allows the user to define a length over which a photon can diffuse no
faster than the speed of light, such as a computational cell or a fluid charac-
teristic dimension [31]. Its introduction into the flux-limited form of the diffu-
sion coefficient can be considered as a ceiling for the diffusion coefficient in
much the same manner as the user defined vacuum magnetic resistivity value
in MACH2 [22].

With 1/ (Al) in the diffusion coefficient, the |VE|/E term can actually be
removed, since numerically 1/ (Al) additionally flux limits the physical
regime represented by |VE|/E. For the calculations presented in this work,
this term is preserved along with 1/ (Al). This is due partly to that fact that
|VE|/E has a physical meaning which is associated with the system that is
being modelled. At most, an error of a factor of 2 could result in the value of
the radiation diffusion coefficient (when the two terms are of the same magni-
tude) if both terms are retained and 1/ (Al) is defined appropriately.

As a fluid transitions from an optically thick to optically thin regime, the
radiation field and the material become increasingly decoupled. In the
extreme thin case, the radiation field ceases to influence the dynamics of the
fluid. To accurately depict this diminishing interaction of the radiation field
and fluid, any terms which relate the radiation field and material must vanish
in this limit. In particular, the radiation acceleration of the fluid should no
longer be a viable force in the momentum equation. As written in Equation
(36), this term is present under all physical conditions and results in an artifi-
cial radiation pressure contribution as the thin fluid regime is approached.

This physical discrepancy can be removed by introducing a multiplicative fac-
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tor [14] given by

1

T+ /d) (38)

to the radiation acceleration term in the momentum equation. Here Xp, the
photon mean free path, is defined as 1/ (x,p) and d is a user defined dis-
tance outside of which the photons are considered to be free streaming. As kp
becomes larger and eventually overtakes the value of d, the above multiplier
decreases until it approximates zero. This allows for a smooth reduction in the
radiation acceleration force as the thin limit is approached. The revised

momentum equation thus takes the following form:

o _ ] _ 1 1 - = =
pl:a‘*'vovv] = -V (p+§(W)aR7§)+JXB+V'G . (39)

To maintain consistency among the evolution equations and conserve
energy, the radiation pressure contribution in the radiation energy equation
must also contain the multiplier of Equation (38). With this pressure term
multiplier and the flux-limited form of the diffusion coefficient, the radiation
energy equation is written finally as:.

] - 1 1 —
m (aRT';) =-p-V (aRT}ti) - (1+§ (W))(GRT‘;)VU

+V-Kmd

v (aRT;iz) +aRcKPp(T4-T§) . (40)

This is the equation that is implemented into the MACH2 code along with the
additional terms in the electron energy and momentum equations found in

Equations (35) and (39).
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3.3 Finite Difference Formulation of the Radiation Energy Equation

Similar to the electron and ion evolution equations, the radiation energy
equation contains the physical processes of diffusion, convection and pressure-
volume work. Thus, its implementation into the MACH2 code comprises the
modification of the existing algorithms for diffusion, convection, and hydrody-
namics, along with additional subroutines required to treat certain aspects of
the radiation field and the electron-radiation coupling. The radiation energy
equation is solved simultaneously with the other MHD fluid equations of
MACH?2 in an operator split fashion. The following radiation processes are
operator split: the electron-radiation coupling, the radiation diffusion, the
radiation hydrodynamics, and the convective transport of the radiation field.
The implementation of these radiation processes in the overall structure and
ordering of the MACH2 code is displayed schematically in Figure 3.4.

The electron-radiation coupling is solved implicitly in time [32,33] and has

the following difference form:

1
EM e = TEl 4 (k) ap(TH" ], 41
B 1+(keff)gj[ bt e} om T ] (41)
el == (ko (ag(TY] - E}} H/e2; 42)
where
(kp) ™ Pt cAt
(kog) = by , (43)
LJ dap (KP)'} c
LJ 3\
1+ —————(T,) . At
(e,)?. LJ
LJ

with E = a RT;, the radiation energy density, and e, the electron specific

internal energy. Here the subscripts i and j have their usual meaning of cell
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indexing and the superscript n is related to the last updated quantity during a
problem timestep, At. The centering of variables is as discussed in Section 3.1
with the vertex i,j always to the lower left of the cell i,j. The above finite differ-

ence form is obtained by writing out the material coupling term

oT
pcva—te = —KppC (aRT:—E)

implicitly:

(T2t -1)

+1
pc, " =—Kppc(aR(T2)n -E**1y

Expanding (Tg) n+l on the right hand side of this equation about (Tg) "ina

Taylor series expansion and keeping only first order terms,

T aT?
pc v—&f—— Ppc(aR(T‘i) “’R‘”(at ) E"+1) :

With

(3_7__‘:)_14 T3H" (ﬂ)
\ ot e ot )’
the above equation becomes

4a dT,
[1+ f" (T3) At]pcv-a-=—x pc(ap (TH"-E"*1) .
v

Rearranging and defining % eff 88 in Equation (43), Equation (42) is obtained.
Using the relationship

oT, JE
—pcva—te =57 = KPpc(aRT‘ei—E) ,

leads to Equation (41) [14].
The diffusion of the radiation energy density is part of the thermal diffusion

routines and follows the calculations of electron and ion thermal diffusion. In a
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conserved integral form, the radiation diffusion equation is given by
5 B
5t—_[EdV= [v- (xVE)dV = [(xVE) -dA .

The finite volume difference representation of this equation for a rectangular
uniform grid in planar geometry, using the MACH2 definition of area normals
[34], and fully implicit in time is given by:

Er.1+1_ n

L,J L,J = v,n+1 v,n+1
A7 (AxAyAz) [(KVyE)i,j+1 + (KVyE)i+1,j+1

_ v,n+1_ v,n+1 l
(KVyE)i+1,j (KVyE)i’j ] 2AxAz

+[-(xV BT +11 + (xV_E)" n1+,1 )
t,J+ t+1,7+

v,n+1_ v,n+1 _1_
+ (KVxE)i+ y (xV_E) 07 ]2AyAz . (44)

The quantities (KVE):.)J. correspond to the vertex-centered radiative fluxes,
and Ax, Ay, and Az refer to the cell dimensions (Az extends normal to the com-
putational plane and is taken to be 1 in cartesian geometry.) The finite volume

form of the vertex-centered flux is given by

(Kv)ij 1
v (KD)Lj 1

These expressions reduce to the standard finite difference forms for a variety
of conditions. Here kY is the vertex averaged value of the flux-limited radia-
tion diffusion coefficient determined by averaging the cell-centered radiative

conductivity over the four cells adjacent to the vertex denoted by i,j. Positive
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values for the radiative fluxes indicate downward flow for the y-component of
flux and flow to the left for the x-component. This convention appropriately
defines the energy being added to a cell (fluxes are defined at vertices) as a
positive value and energy being removed from a cell as a negative value. The
indexing notation and directions of positive flow as defined in the MACH2
code are indicated in Figure 3.5.

The finite volume difference form of the diffusion equation as defined by
Equations (44), (45), and (46) can be shown to simplify to a finite difference
form under certain conditions. Writing Equation (44) in terms of the cell-cen-

tered radiation energy densities and assuming a constant x:

En+1—En KU 1

i,J LJ _ [En+ +oER+L _ En+1_2En+ n+
At 4(Ay)2 1,j+1 ’J+1 J i+1j+1
2En+1 +En+1 +2En+1 +En+ ]
i+1 77 %i+1,j-1 1 1,j-1

K’ 1 +1 +1 , antl

b [E'” ~2EM Y —4ET L 2ETY L 4B

4(Ax)2 1,j+1 i, j+1 1.] ‘i+1,j+1

n+1 n+1 n+1 n+
+2E;{;+E; 11+ -2E; i +E; T 1] (47)
For uniform flow in the y-direction, i.e.,

E'_l’j = Ei,j =Ei+1,j y J=3-1,5,j+1

l

the expression in (47) reduces to the familiar finite difference form [32]

n+1 n
Ej ~Eij__¥

n+ n+1 n+1
= (Ay)z[E Pl -2E} BN (48)

As seen from Equation (47), the diffusion of the radiation energy density in
implicit form describes a set of equations written in terms of unknown quanti-

ties E"* ! and known quantities E® and boundary conditions. In MACHZ2, the
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Figure 3.5. MACH2 notation used in the finite volume differencing of the
various fluid equations. The indexing corresponds to the cell-centered
values, while the arrows indicate the directions of positive flow for
vertex-centered fluxes.
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solution to this set of equations is carried out using a Jacobi iteration scheme.
The efficiency of the iteration algorithm is improved by adding a relaxation
capability to decrease the number of iterations needed to reach convergence,
and making available a multigrid method to accelerate the convergence [22].

For uniform flow in the y-direction, the Jacobi formula with a relaxation capa-

bility can be written as:

N
+1 Y m
JJ k=1

The variable m denotes the mth iteration, while N is the number of mesh
points along the y axis and a ik is the value of the coefficients in front of the
E™*! terms. The expression in brackets is commonly referred to as the resid-
ual and indicates the error in the estimated (iterated) solution to the exact
solution [35]. The multiplier v, which is the relaxation contribution to the
expression, is called the relaxation parameter and is restricted to the range
0 <y<2 [36]. When 0 <y<1 the iteration scheme is said to be under-relaxed,
while for 1 <y<2, it is considered to be over-relaxed. Under-relaxation can be
used to obtain convergence in cases that are not convergent by Jacobi itera-
tion alone. Over-relaxation (SOR- Successive Over-Relaxation) is typically
used to accelerate the convergence of problems which already converge by
Jacobi iteration [37]. In general, iteration techniques with a relaxation multi-
plier are called relaxation methods.

For the above iteration scheme, the values of the radiation energy density
at the last timestep are used as initial “guesses” (i.e., the zeroth iteration
values) in the Jacobi formula and a user specified relaxation parameter is
employed to over-relax or under-relax the residual. With each iteration, a
convergence test is applied to the residual. Until the convergence criterion is

met, a corrective term is added to the last iterative approximation to the solu-
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tion. This results in a sequence of approximate solutions which converge to
within a specified value to the exact solution.

Typically, the Jacobi iteration scheme is slow to converge and requires a
large number of iterations. This can be numerically explained by representing
the residual, or error, between the approximate solution and the exact solu-
tion by a Fourier series consisting of a superposition of modes of varying
wavelengths. Numerical experiments demonstrate that for such a representa-
tion, standard relaxation schemes such as Jacobi/SOR remove (or smooth) the
high frequency components of the residual rapidly, while reducing the low fre-
quency components at a much slower rate [38]. This results in an overall slow
convergence rate.

To improve the rate at which low frequency components are eliminated
from the residual, acceleration techniques are commonly applied to standard
iteration algorithms [36]. In MACHZ2, a Full Approximation Storage (FAS)
multigrid technique [39] can be used in conjunction with the Jacobi/ relax-
ation scheme to speed up convergence [22]. In general, multigrid methods are
based on the observation that low frequency components of the error defined
on any given grid become high frequency components on a coarser grid. By
going to a coarser grid, these original low frequency components can be
removed using standard iterative schemes.

In the FAS “v-cycle” method [36], an approximate solution and residual are
initially defined on the finest grid. A designated number of iterations are
performed on this grid, quickly smoothing the high frequency components of
the residual and approximation. These updated values are computed via a
restriction operator onto the first coarser grid level. The iterative procedure, or
relaxation, is again carried out at this level, essentially removing the high

frequency components of both the approximate solution and the residual.
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These new quantities are subsequently determined on the next coarser grid.
This process of relaxation and restriction is continued until the coarsest grid is
reached. At the coarsest grid level, the approkimate solution is solved to the
degree specified by the convergence criteria. This solution is then interpolated,
or prolongated, onto the next grid level where it undergoes the designated
number of relaxations steps. In this manner, a cycle of prolongation and relax-
ation is repeated until the finest grid is reached and a final solution is
obtained.

MACH2 provides the option to accelerate convergence using the FAS multi-
grid method in either a “v-cycle” mode as described above or a “converge” mode
[22]. With the “converge” mode, the movement from one grid level to another is
based on the convergence criteria. At a given grid level, the convergence test is
applied to the residual. If the convergence criteria is not met, the code moves
to the next coarser grid, and the Jacobi/relaxation algorithm is applied at that
level. If the criteria is met, the code proceeds to the next finer level.

Following the diffusion of the radiation energy density and magnetic field,
MACH?2 calculates updated values for the fluid variables resulting from hydro-
dynamic processes. In this portion of the code, the velocity, density, and mag-
netic field are solved implicitly using a block Jacobi iteration scheme with a
Newton step [34]. The radiation portion of the hydrodynamics entails adding a
radiation pressure term to the electron momentum equation which solves for
V.0, and a pressure term to the radiation energy equation (refer to Section
3.2). A finite volume difference representation for the hydrodynamic portions
of the fluid equations can be found in [34], and will not be written out here.

The convection of the radiation energy density is performed along with the
convection of the other fluid variables and is similar in form to the finite vol-

ume difference notation found in [34]. The advection requires the calculation
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of convective fluxes, which are edge-centered quantities. In general, the com-

putation of a convective flux for a cell-centered variable requires the averaging
of the cell-centered quantity to the cell edge. MACH2 incorporates two differ-
ent interpolation schemes for choosing the interface value, a first order donor
cell method or a second order van Leer method. A complete discussion of these
two methods and results from simulations using each method separately can

be found in [27].
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3.4 Limits of the Nonequilibrium Diffusion Approximation and
a Comparison to the Emission and Equilibrium Diffusion

Models in MACH2

Ideally, the flux-limited form of the nonequilibrium radiation diffusion
equation should produce the physically correct behavior under optically thin
conditions when radiation is free streaming, while reducing to the equilibrium
diffusion approximation when the material is opaque and the radiation field
and material are in equilibrium with each other. Each of these extreme limits
is provided for in the MACH2 code through an additional term in the electron
energy equation.

For an optically thick fluid, the material is opaque to photons and radiant
energy can be transported only through a diffusion process. Under conditions
in which the radiation field and the material are in local thermal equilibrium
with each other, the radiation field is Plankian at the material temperature.
Radiant energy is then diffused through the fluid at a rate proportional to
VT,. In this limit, MACH2 incorporates an equilibrium diffusion model which

modifies the electron thermal conductivity to include an additional radiation

heat conduction term [22]:
4a cT3
K=k +—R ¢ (50)
e 3xp
de _ _ V.5+F-E+V- (VT (51)
pm-—-—pe ‘v+J-E+V. (x e).

Consider the nonequilibrium radiation diffusion energy equation written in

the following form:

apTh
P% ( RP R) - _% (aRTI43) V-u+¥- Kradv (aRT;i?) +aRCKP(Tz - T;)
(52)
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In the limit of equilibrium diffusion, Tg = Te, x, ; — ¢/ (3xp) and the above

equation becomes

d aRT:)_ 1 _  4agTye 53

Combining this with the electron energy Equation (35),

4
@,,1(%72
P dt dt\ p

)J = - (pe+%aRT3) (V-0)+J-E

( 4a"i:";‘?c)vcr (14)
+V. Kp + 3P . -

e

This is the equilibrium diffusion equation of Section 2.2. In systems where the
material energy is much larger than the radiation energy density, the rate of
change in the energy density and the radiation pressure term have no effect
on the energy balance or the motion of the fluid and may be neglected [18].
The equation then reduces to the equilibrium diffusion model of MACH2.

In the free streaming limit, the fluid is optically thin and the radiation
field does not couple efficiently with the material. In this case, MACH2 sup-
plies an emission model which simulates radiation cooling caused by photons
of various energies leaving the local area. As a fluid radiates, it loses energy.
Because the fluid is thin, this radiation can escape the system with little inter-
action, causing a decrease in electron specific internal energy. The emission
model in MACH2 performs the equivalent of this process through an energy
loss rate term, a chTf, in the electron energy Equation [22]. In instances
where the material energy is much greater than the radiation energy, or
T, » Tp, the electron energy Equation (35) becomes:

de
. - - = =
p[¥+v-vee] =-p,V-v+J-E+V. (KTeVTe) +(Dei_aRCKPT: (54)
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Thus energy is removed from the electron fluid at a rate given by a RCKPT;1 ,
which is the emission model of MACH2. The manner in-which this energy is
removed from the system as a whole, however, differs between the thin limit
of the diffusion approximation and the MACH2 emission model. The coupling
term which arises out of the nonequilibrium diffusion approximation causes
the loss in electron energy to result vin an increase in radiation energy density.
The radiation energy density is then transported out of the system through
flux-limited diffusion, leaving the system at cE. This is opposed to the emis-
sion model, which instantaneously removes this amount of electron energy
each calculational timestep.

The emission model and the equilibrium radiation diffusion model of
MACH?2 are based on the assumption that problems of interest occur at tem-
peratures and densities in which the material energy is always greater than
the radiation energy density. Under such conditions, the nonequilibrium radi-
ation diffusion equation reduces to these models in the limits where they are

appropriate.
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CHAPTER 4. THE MARAUDER COMPACT TOROID EXPERIMENT

The MARAUDER (Magnetically Accelerated Rings to Achieve Ultra-high
Directed Energy and Radiation) program at the Phillips Laboratory was
designed to study the formation, compression, and acceleration of high energy
compact toroids and their applications. This investigation was motivated in
part by the RACE (Ring ACcelerator Experiment) effort at the Lawrence
Livermore National Laboratory [8], and utilizes many of the same concepts.
Both experiments involve the formation of a compact toroid plasma ring via a
magnetized coaxial plasma gun, the acceleration and/or compression of the
ring as it is pushed through a conical coaxial electrode region, and the
optional ability to further accelerate and focus. The MARAUDER experiment
differs quantitatively from that of RACE in the amount of mass which resides
within the toroidal confinement structure, the accelerating currents which can
be applied to the compact toroid, and the specific experimental geometry. Typi-
cally, more massive compact toroids and larger accelerating forces are used in
MARAUDER. Figure 4.1 is a cartoon illustrating all of the various stages of
the MARAUDER experiment including stagnation upon an end plate.

Plausible MARAUDER parameters include a compact toroid mass in the
0.1 to 10 mg range, radial compression ratios ranging from a factor of 3 to a
factor of 20, and acceleration to final velocities between 10 and 200 cm/us
within a 10 psec timespan [40]. At the higher end of this parameter spectrum,
compact toroids with directed kinetic energies of a few to ten MJs are obtained.
To date, the MARAUDER experiment has successfully formed compact toroids
for a variety of plasma species with toroid masses between 1 and 2 mg. A factor
of 9 compression has also been achieved, as well as directed kinetic energies

from a few hundred kJs up to 1 MJ.
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acceleration

compression

formation
volume

first discharge

Figure 4.1. The MARAUDER experiment. Gas is injected into a magnetized
plasma gun and a discharge applied. This breaks down the gas and pushes mass
and field into the formation volume, creating a compact toroid. The toroid relaxes
into a Taylor state [47]. The second discharge is then applied, compressing the
toroid to high density. During this time magnetic flux accumulates behind the
plasma ring accelerating it to high velocities. Radiation is produced as the fast,
high density compact toroid stagnates against an end plate.
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A schematic of the current MARAUDER experimental configuration is
displayed in Figure 4.2. The apparatus can be divided into three sections, each
pertaining to a specific evolutionary stage of the compact toroid. The formation
section, in which the compact toroid is created, covers the lower portion of the
system and consists of a plasma gun and an expansion region. It is connected
to a compression section which is defined by a pair of nested cones. Once
formed, the toroid is pushed through this compression region, increasing in
mass density and magnetic field strength. These increases are necessary to
obtain the high material densities and velocities required for many applica-
tions. Downstream from the compression zone is a straight coaxial section
which provides a region for further acceleration of the toroid apart from
compression. This defines the upper portion of the apparatus. To aid in the
understanding of the formation and acceleration properties of the compact
toroid, another experimental configuration besides that depicted in Figure 4.2
has been used. In this design, the compression and straight coax sections are
replaced with a short cylindrical acceleration coax.

The compact foroid formation process is illustrated in Figure 4.3. A neutral
gas is injected (puffed) into a coaxial plasma gun with an embedded, nearly
radial, bias magnetic field. A voltage is applied to the conducting walls, creat-
ing a voltage difference across the electrodes. It is believed that cosmic ray
electrons which are present within the plasma gun coaxial region feel the effect
of the potential and are accelerated towards the lowest potential conducting
wall. These electrons collide with the neutral molecules or atoms comprising
the gas, ionizing them. These charged particles in turn, ionize further neutrals
within a mean free path distance. This continues until an avalanche effect
takes over (this is commonly referred to as the Paschen breakdown), ionizing a

large number of the constituents of the gas and producing a plasma.
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Figure 4.2. Schematic of the first MARAUDER 3:1 radial compression experiment [41].
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The voltage difference across the electrodes causes a current flow through
the ionized plasma adding a toroidal (azimuthal) magnetic field to the plasma
gun (Figure 4.3 a). A Jx B force associated with the toroidal field and the
radial current flow allows the toroidal field to act as a “piston” pushing the
magnetized plasma down the axial length of the plasma gun. Because the
radial field is frozen into the plasma, it becomes elongated and poloidal (with
ends being embedded into the conducting walls since the poloidal field has had
time to penetrate them) as the plasma is forced towards the muzzle of the gun
(Figure 4.3 b).

The upper end, or muzzle, of the coaxial plasma gun opens up into a larger
area defined by a wider separation between inner and outer conducting walls.
This region is often called the expansion or formation region and takes the
place of the flux conserver in traditional spheromak experiments [43]. As the
field-embedded plasma is pushed into this region, it expands forming a
magnetized plasma bubble, i.e., plasma toroid, with the poloidal field lines at
its base stretching back into the gun region where they remain attached to the
gun electrodes. This shear field configuration in the gun region, along with the
non-zero resistivity of the plasma, causes the field lines in this region to recon-
nect. The reconnection of the poloidal field lines close the magnetized bubble,
thus forming a compact toroid (Figure 4.3 c).

Without the occurrence of magnetic reconnection, a self-contained conipact
toroid could not be formed using a plasma gun/expansion configuration. The
reconnection process is a three dimensional effect which is associated with the
resistive tearing mode instability [44]. This particular instability arises when
a plasma current layer becomes unstable as a result of finite plasma conductiv-
ity. In the later stage of formation, a current sheet is produced in the region of

null field where the stretched poloidal magnetic field in the gun region changes
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direction. For the discharge and field energies indicative of MARAUDER
formation shots, the field and plasma conditions are such that magnetic recon-
nection of the field lines in this region occurs naturally. This spontaneous
reconnection can also be driven to take place on a faster timescale by applying
an acceleration discharge near the base of the toroidal bubble. This introduces
an additional toroidal magnetic field which pushes the poloidal magnetic field
lines closer together, increasing the rate of reconnection [43].

Once formed and in the expansion region, the compact toroid is often
allowed to relax toward a force free, minimum energy, equilibrium state
referred to as a Woltjer-Taylor state. Force free configurations are described
classically by the relationship Jx B = Vp = 0 which leads to the eigenvalue
equation Vx B = AB with A constant [45,46]. In the lowest energy mode, the
force free configuration can be shown to be stable to MHD instabilities [46,47].
Thus, by allowing the compact toroid to relax to this minimum energy state,
the toroid will remain stable and resilient under subsequent conditions of
acceleration.

In the MARAUDER experiment, the plasma gun consists of a coaxial
conductor with inner wall at 44.8 cm from the center line and outer wall at
52.4 cm, creating an electrode gap of 7.6 cm. The inner electrode is the anode,
and neutral gas is puffed through the outer electrode into the gun region via
an array of 60 equally spaced gas valves. At present, between 0.5 and 2 mg of
gas is believed to be injected into this region with a gas species typically of
Nitrogen or Argon [40,43]. (Neon, Krypton, and Xenon are designated as
future possibilities.) Both experimental measurement of the gas distribution
in the gun region and 2-D hydrodynamic computations of the mass injection
process give a qualitative picture of the transient gas distribution up to the

time of the formation discharge current.
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The initial bias radial field is produced by solenoids driven in series by a
15mF, 200 pH, 1.5 - 2.0 kV capacitor bank with a 10 ms current rise time [48].
The two solenoids are located on either side of the plasma gun and reach a
peak current of ~ 3 kA for a 2 kV discharge. This results in a radial-axial field
of 0.1 to 0.5 Tesla in the gas puff region which reaches its peak value at ~ 12
ms. Computationally predicted initial gas distributions along with initial
injected field configurations for representative formation shots are shown in
Figure 4.4 and Figure 4.5, respectively.

The formation discharge is produced by a portion of the Phillips Labora-
tory Shiva Star capacitor bank. The Shiva Star capacitor bank consists of 36
fast capacitor bank modules and can be configured to allow the use of 3, 6, 12,
or all 36 modules. Three of the modules are used for the formation discharge
resulting in a 110 pF, 40 - 100 kV gun bank. The bank discharges through a
transmission line that connects to the bottom of the coaxial cylindrical conduc-
tors. Once the neutral gas is ionized within the gun and a current path is
established, the current discharge determines the magnitude of the piston
Jx B force pushing the plasma-embedded radial field up into the expansion
region. The expansion region has an ever evolving geometry since it serves
two purposes - first to aid in the formation of the compact toroid, and second to
provide the necessary transition to an acceleration and/or compression stage.
The most current expansion region geometry is shown in Figure 4.2. Here the
outer wall of the conductor is at 62.6 cm. Figure 4.6 (a) - (c) displays a MACH2
computational simulation of the formation process, starting from the time of
the formation discharge leading up through the formation of the compact
toroid in the expansion region. This calculation was carried out using a varia-
tion on the expansion region depicted in Figure 4.2.

One can imagine a large number of compact toroid applications that
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Figure 4.4. Computationally predicted 2-D mass distribution prior to the formation
discharge. This is arrived at by superimposing the gas distributions resulting from all
60 gas valves using a MACH2 calculation modelling the mass distribution from a
single valve. The superposition of the 60 distributions is averaged over the azimuthal
angle to obtain the 2-D mass contours shown above. The contours are logarithmic,
ranging from approximately 5.0 x 1016 /cm3 in the region adjacent to the nozzle and
thinning out to 1.0 x 10'! /om3 in the outermost gun regions [49].
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Figure 4.5. Initial magnetic field configuration shown above as poloidal magnetic
flux contours. This is derived from a time-dependent electromagnetic code which
calculates the diffusion of magnetic flux produced by currents in the solenoid coils
exterior to the gun through the gun electrodes [49].
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require toroids with directed kinetic energies in the MdJ range. This is particu-
larly true for the use of the compact toroid in radiation production. As
discussed in Section 2 of Chapter 1, the impact of a high velocity, high energy
compact toroid against a stationary target has the potential of being a signifi-
cant source of keV range radiation. The ability of a stagnating compact toroid
to provide the desired radiation yield depends upon the density of the material
and the electron temperature during the stagnation process. It is these param-
eters which determine the spectral distribution of radiation and the radiative
power output.

For the plasma temperatures and densities typical of MARAUDER forma-
tion stage compact toroids, and the accelerating discharges which can be
applied to them, the stagnation process is not sufficient to drive the density
and temperatures to the level of efficient radiation production. To overcome
this problem, the stable nature of the compact toroid is utilized to accelerate
the toroid to a large directed kinetic energy. This is done with the intent of
converting a large fraction of the plasma kinetic energy into internal energy
upon stagnation. This conversion is efficient for supersonic compressions,
where shock physics enhances the increase in plasma density and material
temperature. Such supersonic compressions require large toroid velocities,
hence, compact toroids with kinetic energies in the MdJ range.

To obtain the large specific kinetic energies necessary for high energy
density radiation production, a mg-range compact toroid must be accelerated
to a velocity on the order of a 100 cm/us or more. This requires large accelerat-
ing forces. The piston, or accelerating, force is proportional to the azimuthal

magnetic field which is given by:

(55)
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where I, is the bank discharge current and r is the distance from the center
line of the coaxial conductors. The field has a radial dependence making the
piston force nonuniform across the conducting gap and thus along the back of
the toroid. Specifically, the piston force is preferentially stronger at the inner
electrode. It has been shown both computationally [50] and experimentally
[51] that when the magnitude of the piston field exceeds that of the compact
toroid, the larger accelerating force on the inner conductor pushes the toroid
to the outer electrode, allowing the piston field to flow past the compact toroid.
This effect is called “blowby” [51] and for the purpose of compact toroid accel-
eration is undesirable. To prevent the occurrence of blowby, but still retain the
capability of applying a large accelerating force, the toroid magnetic field is
increased through the process of self-similar compression. The maximum
accelerating force which can then be applied to the toroid is given by:

_ Bl

6~ 21trc (56)

where r, is the radius of compression.

Although compact toroid compression is used to circumvent the blowby
phenomenon associated with the acceleration of the compact toroid, it also has
other benefits in terms of final radiative output. Compression provides the
additional advantage of increasing the plasma density. This has a number of
effects on the confined plasma properties. The increase in density leads to a
decrease in photon mean free path and also electron-ion interaction distance.
This improves the overall efficiency of the coupling and aids in the conversion
of kinetic energy to material heating to radiation during the stagnation.

The plasma beta, which is the ratio of the plasma pressure to the field
pressure, describes the ability of the magnetic field to confine the plasma. As

the compact toroid is compressed, the plasma density, and subsequently,
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temperature increases. This results in an increase in plasma pressure which
competes with the increased magnetic field pressure. If the assumption of a
self-similar, quasistatic compression [52] is made, then the compression is
considered to be an isentropic process, i.e., one that is adiabatic and reversible
[53]. Under such conditions and assuming a monatomic gas, values of plasma
pressure and magnetic field after compression are related to the correspond-
ing precompressed values in the following manner (See Appendix A for a deri-

vation of these relationships.):

P (E)S, B _ (%Y 57
po rc E; - rc
With
n kT
=L -1, (58)
B/ (2u,) B%/(2n,)
To (59)

L
B

~

c
Here r,, is the radius prior to compression and T, ng correspond to the temper-
ature and density, respectively of the particular species. Equation (59) states
that the plasma beta increases with compression, reducing the ability of the
field to confine the plasma. However, as the plasma radiates, it keeps the
plasma temperature from increasing rapidly and a lower plasma beta can be
maintained.

Compression may be performed simultaneously with acceleration or alone
followed by acceleration. Generally speaking, the idea is to use an initial
compression to aid in acceleration, and after acceleration, a final focusing
(compression) of the toroid to reach a desired density. In this manner, the radi-

ation losses are kept at a minimum throughout the compact toroid travel time,
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increasing the density of the toroid just prior to impact. Because radiative
emission in many cases (i.e. Bremsstrahlung) goes as n?, an increase in
density results in a good radiator.

The first MARAUDER compression geometry is displayed in Figure 4.2.
The compact toroid is compressed by a factor of three in radius while simulta-
neously undergoing acceleration. Beyond the compression cone, the compact
toroid is pushed upstream into the stovepipe region, eventually stagnating
against a target. A MACH2 simulation of the compression and the journey
down the stovepipe for this experimental configuration is displayed in Figure
4.6 (d), (e), and (f). Future experimental designs which are under consider-
ation include a factor of 5, 9, and 10 radial compression, variations on an addi-
tional focusing cone or an extended stovepipe, and further acceleration - all

with the goal to maximize the radiation production during the stagnation

process.
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CHAPTER 5. BENCHMARKING

Testing, or benchmarking, newly implemented code against known analyt-
ical solutions or documented computational solutions is a necessary stage of
code development. While benchmarking can provide a means of debugging
and improving algorithms, its primary function is to validate the ability of an
algorithm to simulate physical problems effectively. The continuous partial
differential equations which constitute the radiation MHD equations are
approximated by discrete, coupled finite difference equations. The solutions to
these finite difference equations are determined through algebraic manipula-
tion and numerical techniques. The resulting algorithms often have
limitations associated with them. Benchmarking reveals the accuracy with
which the algorithms exhibit the expected physical behavior and defines
regions and parameters where the algorithms fail to do so. This aids in the
proper simulation of complex problems and in user discernment over potential
unphysical results arising from purely numerical effects.

The test problems which are presented in this chapter are designed to spe-
cifically investigate the simulation of radiation-electron coupling and radiation
diffusion both separately and together. Because there is no well defined set of
radiation MHD test problems, these are based on and include a combination of
personal choice, examples in the literature, or suggestions by others working
with radiation hydrodynamic codes. The advection of the radiation field, radi-
ation pressure-volume work, and the effect of radiation acceleration on the
material has also been benchmarked, but on a qualitative level. These terms
were found to produce the numerically correct behavior for both optically thick
and thin physical regimes and exhibit qualitatively correct behavior in the

transition region. No further remarks will be made concerning these terms.
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5.1 Numerical Stability and Accuracy

The radiation MHD equations are a set of partial differential equations
which describe the time evolution of a radiating fluid. In general, the numeri-
cal solution to any time-dependent partial differential equation involves
rewriting the equation in an algebraic “difference” form with physical vari-
ables defined at discrete locations on a finite grid. This leads to a set of
algebraic equations coupled through values at neighboring grid locations.
With initial conditions and/or boundary conditions, these coupled algebraic
equations can then be solved at any subsequent time. This can be a straight-
forward process when using known values of the dependent variable (fully
explicit method), or can involve solving a set of coupled algebraic equations
when taking either time advanced values of the dependent variable (fully
implicit method), or a combination of known and time advanced values.

The solution that is obtained for the difference equation is clearly an
approximation to the true solution of the differential equation. The degree to
which these two solutions compare with each other depends on the algebraic
formulation of the differential equation, i.e. truncation errors which occur
from the discretisation of derivatives, and any errors to the exact solution of
the difference equation stemming from computer roundoff, irregular grid zon-
ing [14], boundary effects [14] and applied equation solvers. The manner in
which the partial differential equation is structured into an algebraic expres-
sion can yield values which are grossly different from those of the true solu-
tion, and this dissimilarity can grow with time. This condition is referred to as
numerically unstable and is commonly manifest in nonphysical oscillatory
behavior which increases at each calculational timestep. A finite difference

form is defined as unstable when a perturbation, i.e. error, to the exact solu-
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tion of the difference equation continues to grow until it becomes the dominate
term in the solution. This perturbation can be introduced at any stage of the
computation and typically depends on cell size, timestep, and physical param-
eters. A finite difference form is referred to as unconditionally unstable if the
algorithm is unstable to all values of cell size and timestep, and conditionally
unstable if it exhibits stable behavior for only certain values of cell size and
timestep. If a finite difference equation is stable for all values of timestep and
cellsize, then it is defined as unconditionally stable.

Stability criteria for a difference equation can be established using a num-
ber of stability analysis techniques. One of the more common techniques
which is found in the literature is the von Neumann stability analysis [36].
This analysis is applicable to linear difference equations with constant coeffi-
cients and defines necessary conditions for stability. It can also generally be
applied to more complicated difference equations which are indicative of prac-
tical physical problems. For example, nonlinear equations can be linearized
and this analysis performed, while variable coefficients are addressed by
treating the analysis as local; the coefficients are then considered constant.

To illustrate the von Neumann stability analysis, the evolution equation
for the diffusion of radiant energy is examined. Recall from Section 3.3 that
the diffusion equation for the radiation energy density in one dimension,

assuming a constant diffusion coefficient:

2
%‘_f_ 2L (60)
oy

can be written explicitly in difference form as

n+1 n n n n

A7 2y (61)
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Here the subscript i as it appears in Equation (48) has been omitted for sim-
plicity. In this case, the spatial second derivative of the energy density in
expression (61) is written in terms of known values at timestep n. This is
referred to as explicit differencing of the differential equation. Alternatively,
this second derivative could have been written in terms of the values of E at
the n+1 timestep (as in Section 3.3), defined as implicit differencing, or some
mixture of values between the two timesteps often denoted as a time-centered
differencing. As will be shown below, the time differencing scheme chosen can
effect the stability of the algorithm differently. |

One interpretation of the von Neumann stability analysis considers a per-
turbation introduced at each grid point during any time level and represents
this as a finite Fourier series [36, 55]. This Fourier series is then substituted
into the discretized linear equation and stability is determined by considering
whether separate Fourier components of the perturbation decay or amplify in
progressing to the next time level. For a linear algorithm, it is sufficient to
consider just one term of the Fourier series [36]. Thus, with the perturbation

defined by

E, =g (62)
where k is a real spatial wave number and § is an amplitude factor which
depends on k%, a difference equation is said to be stable when substitution of

E p leads to a relationship in which
gn +1

gn

<1. (63)

Substituting Equation (62) into equation (61):

gn+ 1ezijy _ gneiijy
(At)

[eik U+1)Ay _ 2eiijy + eik (-1 Ay]

(Ay)2

= kE" , (64)
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or

gn+ 1_gn 1 elkAy _o4 e—lkAy] .

(65)

Expressing the exponential terms in trigonometric form and rearranging, the

above equation becomes

gn+l o é’;"[l— 21c‘At2 (1-coskAy)] : (66)
(Ay)
Dividing through by &" and rewriting the term in brackets:
n+l 4xAt kA
E" =1- K 281112 (_2_y_ . (67)
g" (Ay)

Applying the stability criterion as defined by Equation (63),

1 4xAt Sinz(lcﬂ) <1. (68)

2 (Ay)? 2
Since
A
sinz(%) <1,

this states that the explicit formulation of the radiation diffusion equation (or

any diffusion equation for that matter) is conditionally stable when

1 4xAt 2xAt <1 . (69)

This stability condition can be physically interpreted [33] by considering the

diffusion time across a cell size of width Ay:

(Ay)2
tdiffusion “Tx (70)

Then equation (69) states that the maximum allowed timestep that can be

used before the solution displays any unstable behavior is on the order of the
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diffusion time across a cell.

If an implicit differencing scheme is considered, then the values of the
radiation energy density on the right hand side of Equation (61) are evaluated

at timestep n+1 and

n+1 n n+1 n+1 n+1
: (Ay)
Substituting in the expression (62),
kA —ikA
§n+1_§n=K§n+1[el Y _2+e y] ’
At (Ay)?
§"+1[1+ (z:A)tz(l—coskAy)] =E" (72)
Yy
or
gn +1 _ 1 73)
&" 1+ 4KAt2 sin? (’EX
(Ay) 2

Using the stability criteria (Equation (63)), it is apparent that this finite dif-
ference form of the diffusion equation is unconditionally stable since the mag-
nitude of the above expression cannot exceed unity for any positive £ and At.
This eliminates the need for a time restriction as imposed in the explicit
scheme. Thus, as far as stability alone is concerned, this fully implicit method
is preferable to the explicit method.

It should be noted that even if an explicit difference expression is numeri-
cally stable in that the amplitude of an existing (or introduced) perturbation
does not increase with time, it can still lead to unacceptable physical results.
One example in which this is numerically evident is in the difference repre-

sentation of the electron-radiation coupling equation. For an explicit, or
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backward, time differencing formulation of the electron-radiation coupling,
the computational solutions will oscillate about the equilibrium values of the
material temperature and the radiation energy density under certain condi-
tions. In particular, the oscillations will occur if the calculational timestep
becomes too large. In this case, the oscillations are not caused by the growth of
any numerical error present, but by overshooting the solution because of the
large timestep. This is very different from a solution which is increasingly
diverging with each timestep. For the purpose of this work, the nonphysical
oscillatory behavior exhibited with this difference form is also considered a
numerical instability of sorts.

From the above discussion, it is evident that the manner in which a differ-
ence form is constructed can influence the stability of its solution.
Unfortunately, the condition of stability does not insure accuracy (or conver-
gence) of the difference solution to that of the differential equation it is
approximating. For example, in implicit formulations, the solution can be
unconditionally stable but still be inaccurate for certain timesteps and cell
size. This is because implicit differencing schemes tend to drive the variables
of interest to their equilibrium (steady state) values, neglecting the details of
the small timescale evolution. If the timesteps are too large, the time evolution
of the solution will not accurately depict that of the real solution.

The chosen structure of a difference form basically depends on the physics
in which one is interested. In cases where an explicit formulation leads to
conditional instability, the timestep can be reduced to produce a stable solu-
tion. If the timestep is computationally taxing, or the explicit method is
unconditionally unstable, an implicit formulation or a time-centered treat-
ment might be an alternate form of choice. A fully implicit scheme requires no

timestep limitations for stability, but accuracy may be sacrificed at large
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timesteps. A higher accuracy can be attained if smaller timesteps are taken. If
the details of the small timescale evolution are of interest, either an explicit
scheme, or an implicit scheme with small timesteps can be used.

The accuracy with which the approximate solution to the difference equa-
tion compares to the real solution of the differential equation is an important
issue regardless of the differencing scheme being used. All methods, whether
explicit, implicit, first order in Taylor expansion, or a higher order scheme,
have associated with them some degree of error. In general, the behavior of
the approximate solution should approach that of the real solution in the limit
of infinitesimal cell size and time step. However, when solving a set of equa-
tions, the accuracy is also related to the accuracy of the equation solver. In
many instances, the method of solution entails iterating to convergence. The
convergence criterion, along with the leading term in the truncation error,
should algebraically provide a measure of the difference solution error.

The accuracy of a particular algorithm on a finite grid can often be
assessed computationally by its application to a simple problem which has a
known or exact solution. Manipulation of the convergence criteria (if used),
grid size, and timestep should provide a measure of the accuracy and condi-
tions under which such convergence is reached. For successive grid refine-
ment, stricter convergence criteria, and increasingly smaller timestep, the
difference solution is typically found to approach some value and maintain
this value to within a predetermined accuracy. When this occurs, the differ-
ence solution is said to converge to the exact solution.

The issues presented in this section are important in obtaining the correct
time evolved solutions of the radiation MHD equations. The issue of accuracy
and the importance of timestep, cell size and convergence criteria will be

addressed specifically in the discussion of the benchmarking of the radiation
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diffusion term. In this case, the accuracy of the solution is visibly dependent
on these parameters. The difficulties which can arise from numerical instabil-
ity, as well as accuracy, will become apparent in the following section with the

discussion of the electron radiation coupling.
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5.2 Radiation Diffusion

In an optically thick regime, radiation is transported through the process of
diffusion. Photons interact with surrounding material on the order of a photon
mean free path, exchanging energy and momentum with nearby electrons.
The electrons, in turn, emit radiation indicative of the absorbed or scattered ,
photons, and the interaction process is repeated. In this manner, radiation
energy is transferred throughout the material. As the optically thin regime is
approached, the photon mean free path grows increasingly larger, becoming
comparable to characteristic structural lengths in the material. Under these
conditions, radiation is no longer transported through the material via diffu-
sion, and the standard diffusion approximation leads to physically unaccept-
able results. In particular, the rate of transport of radiative energy exceeds the
speed of light (Refer to Section 2.4 for a complete discussion). Nonetheless, the
diffusion approximation is often maintained in the thin limit, using algebraic
prescriptions to force the proper physics in this regime. In such cases, it is not
only important to test the radiation diffusion algorithm under opaque material
conditions, but also under conditions where the material is transparent to
radiation.

In this section, the radiation diffusion algorithm in the MACH2 code is
examined using a set of test problems which cover a range of physical regimes.
The test problems are initially quite simple, simulating only the physical pro-
cess of radiative diffusion in an optically thick medium where the diffusion
approximation is valid. Further benchmarking entails more complicated test
runs in which both electron-radiation coupling and fluid motion are permitted
in addition to diffusion. For these calculations, the material properties are

defined such that both opaque and transparent mediums are addressed. A
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description of these problems will be deferred to Section 5.4 after the discus-
sion of the electron-radiation coupling. The test problems which are found on
the following pages involve the one and two dimensional linear diffusion of
radiation in a static, opaque medium. These problems have corresponding
analytic solutions with which they can be directly compared.

It should be noted that the diffusion algorithm in MACH2 solves a time

centered difference equation given by [34]:

El1=EP+ (at) [OV2E] 1+ (1-0)VIEL )] (74)
or
EPF1-0atxV2EL} =} + (1-6)AtkVZE] (75)

where 0 is a time centering parameter which defines the type of differencing

being performed. For 8 = 1, the above equation becomes

E}} 1 - AtkV2E} ; 1 E}; , (76)

and the differencing is fully time implicit. On the other hand, 6 = 0 results in
a fully explicit difference form, while for 0 <0 < 1, the differencing is of mixed
type; the preferred value for 0 in this case is 1/2, i.e., time-centered. In
MACH2, the implicit formulation given by Equation (76) is used unless other-
wise specified by the user. For the purpose of this dissertation, this is always
the case, and radiation diffusion in all calculations is done implicitly. The
time-implicit, finite volume difference representation of the radiation diffusion
equation is written out in Section 3.3, Equation (44). A discussion of the itera-
tive solution techniques used to solve the set of implicit algebraic equations is
also found in that section.

As shown previously (Section 5.1), the implicit difference form of the diffu-

sion equation is stable under all parameter conditions. However, implicit
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formulations in general, are known to decrease in solution accuracy at large

timesteps and cell size. The first benchmarking test is thus used to investigate
this issue and to insure that the diffusion algorithm works properly. The test
involves the penetration of radiation from a “hot” radiating wall into a cold
static material. This is modelled numerically by defining a block of hydrogen
in which Tg = 0 eV and the fluid temperature is 5 eV. The hydrogen is bounded
by radiatively insulating walls on all sides except the top and bottom, which
are defined to have a radiation temperature of 10 eV and 0 eV, respectively.
Taking the diffusion coefficient as constant throughout the simulation, the
radiation field is then allowed to diffuse through the medium from the hot
boundary. Eventually a steady state radiation temperature (energy density)
distribution is reached. To isolate the diffusion algorithm for benchmarking
purposes, the physical processes involving electron-radiation coupling and
pressure gradients were neglected.

A series of calculations were performed with the described initial condi-
tions for a range of cell resolutions along the flow direction and a range of
timesteps. In particular, the number of cells used in the calculation varied
from 4 to 32, and two timesteps were essentially considered, 103 s and 109 s.
The computational region was defined by a 2 m x 2m x 1m box, with 4 cells
specified in the direction perpendicular to the flow. The material density was
assigned a value of 1 kg/m3, and the diffusion coefficient a value of 100 m?/s.
With this value for the radiative conductivity, the photon mean free path was
1 pm, substantially smaller than the box length of 2 m. Thus for the system
being considered, the material was optically thick and the diffusion approxi-
mation was accurate in describing the transport of radiation. For the iterative
solving procedure, a relaxation weighting factor of 1.0 was taken and the

tolerance was set to 10°6. This latter value provides a user-defined measure
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for ending the iteration process; when the algorithm makes changes in the
field that are smaller than 1078 times the largest value of the field, the itera-
tion stops. The results from the test runs can be compared directly to the

analytic solution:

E 2E, Z (-1)" .
E(y,t):—l—oy-i-—-n—oz (
n=

where
E,=apTh=137x10° Jm? ,
and [ is the vertical length of the box. A detailed derivation of this solution is
given in Appendix B.
The complete set of calculations is shown in Table 5.1. Each calculation is
defined in terms of the number of cells which span the region parallel to the
radiation flow and the computational timestep. For each case, a diffusion Cou-

rant number is also given. This value is determined by:

At
NC = K 2 .
b (Ay)

This number is useful because it contains both timestep and cell size, and is
therefore a convenient way to place a measure on solution accuracy.

Table 5.1. N ¢ for cell size and timestep

of cells at 107 10°€s
4 0.18 1.8x 10%
8 1.6 1.6 x 103
16 6.4 6.4x 1073

32 25.6 0.0256

Figures 5.1 through 5.4 display plots of the radiation energy density for the

above test runs. In each plot, the analytic solution is represented by a solid
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line while the numerical solution is depicted by open circles. The circles are
drawn at cell-center locations on the numerical grid since the radiation energy
density calculated by MACH2 is a cell-centered value. In all cases, the right
edge of the figures correspond to the hot wall boundary temperature of 10 eV,
while the left edge corresponds to the cold wall boundary temperature of 0 eV.

An examination of Figures 5.1 through 5.4 leads to a number of conclu-
sions concerning the stability and accuracy of the implicit radiation diffusion
algorithm. As expected, the numerical solution is stable, while its accuracy is
clearly dependent on cell size and computational timestep. The influence of
the cell size, or cell resolution, on solution accuracy can be seen by inspecting
the calculated runs made with the smaller timestep, 106 5. At the earlier
times in these calculations, the numerical solution has not converged to the
analytic solution of the differential equation for the coarse grids comprised of
4 and 8 cells. (For this problem, 4 zones correspond to a cell size of 0.5 m,
while 8 zones correspond to a cell width of 0.25 m.) The grids containing 16
and 32 cells have converged though, consistent with the supposition that as
Ay — 0, the approximate difference solution should approach that of the dif-
ferential equation. By the time 1 x 103 s is reached, the numerical solution in
both the 4 and 8 zone cases coincides with the analytic solution.

While finer grid resolution results in improved accuracy of the difference
solution, increasing the calculational timestep typically leads to a correspond-
ing decrease in accuracy. This can be seen by comparing the test results at the
two different timesteps, 108 s and 10°3 s for the same cell resolution. It is par-
ticularly evident in the cases involving 16 and 32 cells, where the energy
distribution at 1 x 103 s has converged at the smaller timestep, but has
diverged somewhat at a timestep of 103 . Regardless of the timestep taken, or
the cell size considered, it is clear from Figures 5.1 through 5.4, that the com-
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putational solutions always converge to the analytic steady state solution at
later times. This is indicative of any implicit differencing scheme which tends
to drive the numerical solution to the steady state or equilibrium solution.

A relationship between the accuracy of the difference algorithm and the
diffusion Courant number can be inferred from Table 5.1 and the above obser-
vations. For Courant numbers less than one and reasonable cell resolution,
the diffusion algorithm produces stable, accurate, time evolved solutions. For
Courant numbers greater than one, the solution still remains stable, but can-
not be assumed accurate at early times. The requirement for sensible cell
resolution arises from the fact that the diffusion algorithm will always trans-
port radiation into adjacent cells as long as a gradient in radiation energy is
present and the radiéltive conductivity is nonzero. In the hot wall problem, for
example, the diffusion algorithm will deposit energy into the first real cell
even if radiation is unable to propagate across the cell in the time being con-

sidered. Recall from Section 5.1, the diffusion time across a cell of width Ay:

(49)*
Ldiffusion ™ x (70)

For the 4 zone case, this value is 2.5 x 10-3 s, and for the 8 zone case, 6.25 x
1074 s. Prior to these times, i.e., at 5 x 10"4s, the radiation field has not had
time to diffuse across the spatial scale of a cell size. The diffusion algorithm is
unable to discern this physical restriction; consequently, the computed radia-
tion energy profile will consist of unrealistic results. This is seen in Figures
5.2 (a) and 5.3 (a), where the radiation energy distribution at 5 x 10" s in both
instances is higher in the cell (or cells) closest to the hot boundary.

Although this discussion of solution accuracy has focused solely on the
issues of cell resolution and timestep, the user defined level of convergence for

the implicit equation solver also plays an important role. If the convergence
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Figure 5.1. Radiation energy distribution for one dimensional radiation diffusion in
the y-direction with 4 cells. Curves plot the energy as a function of vertical distance
for 1 x 1045, 5x 1045, 1 x 1035, 3 x 1035, 5x 1035, 8 x 1035, 1 x 1025, 3 x 102,
and 5 x 102s using a calculational timestep of (a) 105 and (b) 10-3s. The solid lines
represent the analytic solution, while the open circles represent the numerical
solution.
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Figure 5.2. Radiation energy distribution for one dimensional radiation diffusion in
the y-du'ectlon with 8 cells. Curves plot the energy asa functlon of vertlcal dlstance
for1x 10 s,5x10 s, 1x1073s,3x 10" 35, 5x 1035, 8 x 10735, lxlO‘ 25,3 x 102,
and 5x 102 using a calculational timestep of (a) 10'6s and (b) 1073s. The solid lines
represent the analytic solution, while the open circles represent the numerical

solution.
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Figure 5.3. Radiation energy distribution for one dimensional radiation diffusion in
the y-direction with 16 cells. Curves plot the energy as a function of vertical distance
for 1 x 1045, 5 x 1045, 1 x 1035, 3 x 103, 5x 1035, 8 x 1035, 1 x 1025, 3 x 10°%s,
and 5x 10°%s using a calculational timestep of (a) 10% and (b) 103s. The solid lines
represent the analytic solution, while the open circles represent the numerical
solution.
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Figure 5.4. Radiation energy distribution for one dimensional radiation diffusion in
the y-dlrectlon with 32 cells. Curves plot the energy asa functlon of vertlcal dlstance
for 1 x 10 s,5x10 s,lxlO S, 3x 10735 5x10' s, 8 x 1073 S, 1x10 s,3x10’ S,
and 5 x 102s using a calculational timestep of (a) 10‘6s and (b) 1073s. The solid lines
represent the analytic solution, while the open circles represent the numerical

solution.
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criterion is not tight enough, the numerical solution will not converge to the
solution of the difference equation. The results can be quite different from
that of the differential equation and often effect radiation energy transport
and energy conservation. For the diffusion problems considered in this work, a
convergence criterion of 10 provided acceptable solutions.

To test the two dimensional radiation diffusion capability of the diffusion
algorithm, the loss of radiation from a radiatively “hot” confined fluid to its
surroundings was considered. This was modelled numerically by defining a
block of uniform radiation energy density bounded by cold surfaces (Tr=0 at
boundary walls). The radiation was then allowed to leave the system, gov-
erned by a constant radiative conductivity of 100 m?/s. The original material
conditions were the same as in the one dimensional benchmarking problem,
with hydrogen at 5eVandp =1 kg/m3. Two different geometries were consid-
ered, one that is square in the computational plane (a 2 m x 2m x 1m box) and
one that is rectangular (a 2 m x 4 m x 1m box). The cell resolution in the
square geometry was 16 cells by 16 cells, and in the rectangular geometry, 16
cells by 32 cells. The convergence criteria was again set to 10 and a computa-
tional timestep of 10 s was used. The analytic solution is given by (refer to
Appendix B)

v(x,9,t) =E¥(x1,0)¥011L,0)

= -1n" 22,472 2 1
';1;2 (-1) Kk (2n+1)2n2t/41 cos( n+1)nz (B27)

0(2n+1)e 21 ’

and

E,=137x10° Jm3 , -l <x<i , -1 <ysl

Figures 5.5 through 5.8 display the results of these two test runs. Figures
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5.5 and 5.7 are MACH2 contour plots of the radiation energy distribution for
the two different geometries at 5 x 104 s and 5 x 1073 s. Slice plots of the com-
putational solution and the analytic solution are shown in Figure 5.6 and Fig-
ure 5.8. In both cases, the energy density is measured along a path which not
only spans the system but crosses through its center. For the square geometry
this corresponds to a vertical distance along the y-axis, while the rectangular
geometry considers both a horizontal distance along the x-axis and a vertical
distance along the y-axis. In these latter figures, the analytic solution is
defined by the solid line and the numerical solution by open circles. Clearly,

the computational solution converges to the differential solution in both cases.
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Figure 5.5. MACH2 radiation energy density proﬁles for the square 2 dimensional
diffusion problem at (a) 5 x 104 s and b)Sx 10-3 s. Initial conditions are a uniform
interior radiation temperature of Tr=10 eV, and Tp=0 at boundaries. Cell resolution is
16 cells x 16 cells.

97




5

1.40x10

5

1.20x10

E 1.00x10

R

(J/m3) 8.00x10°*

6.00x10*

4.00x10*

-0.063 0.469 1.000 1.531 2.063
y distance (m)

Figure 5.6. Radiation energy density profile for the square two dimensional
diffusion problem. Curves plot the energy as a function of vertical distance
along the y-axis for 5 x 10™ 5,1 x 1035, 5 x 1073 5, and1 x 10”2 s. The solid
lines represent the analytic solution, while the open circles represent the
numerical solution.
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Figure 5.7. MACH2 radiation energy density profiles for the rectangular 2 dimensional
diffusion problem at (a) 5 x 10% s and () 5x 103 5. Initial conditions are a uniform
interior radiation temperature of Tr=10 eV, and Tr=0 at boundaries. Cell resolution is
16 cells x 32 cells.
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Figure 5.8. Radiation energy density profile for the rectangular two dimensional
diffusion problem. Curves plot the energy as a function of (a) horizontal distance
along the x-axis for vertical position at cell 16 (b) vert1ca1 dlstance along the y-ax1s
for horizontal position at cell 8, for 5 x 10451x1035,5%x103s,and 1 x 102 s,
The solid lines represent the analytic solution, while the open circles represent the

numerical solution.
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5.3 Electron-Radiation Coupling

The exchange of energy between a radiation field and a material is carried
out primarily through the interactions of photons with electrons. Under thick
material conditions where electron-photon interaction rates are large, the
electron-radiation coupling plays a significant role in energy exchange. As a
material transitions from a thick to thin regime, this coupling is expected to
become less important, typically playing a negligible role when the material is
thin. For certain conditions in the thin limit, however, coupling may be of con-
sequence for specific radiation lines; electron-photon collision rates may be
substantial for a given photon energy or a range of photon energies, allowing
for some degree of coupling. In any event, it is necessary to accurately depict
the electron-radiation interaction process in numerical simulations.

The testing of the electron-radiation coupling term is accomplished by
defining a static medium with initial temperatures of the material and the
radiation field held at different values. The system is then allowed to evolve
with the electron-radiation coupling turned on. Physically, the two tempera-
tures will reach a steady state value based on characteristic time scales given
by the governing differential equations. This should be observed numerically
with the difference algorithm. This algorithm should also be structured such
that energy is conserved in the system at each calculational timestep. The
requirement of energy conservation, along with a steady state solution on
proper timescales, is necessary to insure the correct modelling of the coupling
term.

In this section, two finite difference representations of the electron radia-
tion coupling equation are examined in light of the above requirements. The

first representation is an explicit form of the coupling equation, while the
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second is an implicit form. Recall the partial differential equations describing
the electron-radiation coupling (Section 3.2):

oT

pe, == = —x,pe(agTe~E) , (77)
JE
5 = %,pc(apT,~E) . (78)

An explicit difference formulation of these equations can be written as:

E" = E”+KppcAt (aR(T;i)n—En) ’ (79)

K C
n+l _on_ D n n+1
/Gl —-Ev—At (ap(TH"-E"*1) | (80)
Here the known values of radiation energy density and material temperature
at timestep n are used to update the radiation energy density at timestep n+1.
This updated energy density is then used to determine the new value of the
material temperature at time n+1. An implicit difference form of the coupling

equations was given in Section 3.3:

Bt = L B+ (bt ag(T)T 4D
LJ i,J eff i i’ R\"e’; i| ?
1+ (keff) :ljl: L,J w]
1 1
ef = el (k)7 (g (TY? ~E77 /0], (42)
(kp)? Pt cAt
k r.l . - l’J l’J 43
et 5 dagp (xp)" ¢ “3)
N
1+ ——20 (T,),; At
(cv)i’j ,

Again, old values of the material temperature and the radiation energy den-

sity are used to determine the energy density at time n+1, which is substituted

102




into Equation (42) to find the updated material temperature.

For a given set of initial conditions, these two difference representations
can be benchmarked against the steady state solution, testing whether the
solutions reach the steady state value within a few characteristic coupling
timescales, and if energy is conserved during this process. A statement of
energy conservation for the electron-radiation coupling can be found by add-

ing Equations (77) and (78) together
0
'a—t (cheTe +E) =0 )

or

pc, T,+E =C, , (81)

where C, is a constant defined by the initial conditions of the system. At any
point in the calculation, this can be used to verify that the values of the elec-
tron temperature and the radiation energy density satisfy this equation and
conserve energy.

If the specific heat capacity and Plankian mean opacity are assumed to be
constant for a closed system of interest, then a steady state solution implies

that

aT

—pcvea—te = X,pc (aRTef‘-—E) =0 .

Substituting the expression (81) for E:
Kppc (aRT:—E) = Kppc (aRT:—Co+ pcveTe) =0,
or

pc C
Tée e 0 _ ¢ . (82)
Qp Qp
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Thus, for constant p, Cy,» and an initial value of T,, this quartic equation can
be solved to find the steady state value of the material temperature and the
radiation temperature. A characteristic timescale over which the material and
radiation field relax toward a steady state solution is determined by the coeffi-
cient in front of the difference term (a RT;1 —E) . Rewriting the material cou-
pling Equation (77) with e = pcveTe,

oe
pri —Kppc (aRTg-—E) .

This equation has the same form as the coupling equation for the radiation

field:
oE
3 " Kppc(aRTg—E) .
Thus, the material specific internal energy and the radiation energy density
go to their steady state solutions on the same timescale which is given by

T, ~ (lcppc)‘1 . (83)

To investigate the nature of the difference algorithms, Equations (79) to
(80) and Equations (41) to (43), a series of calculations were performed on a
rectangular system of hydrogen numerically defined on a 16 x 16 grid in Car-
tesian geometry. For each calculation, the material temperature was initially
assigned a value of 100 eV and the radiation field a value of 10 eV. A set of solu-
tions to these difference expressions were then obtained for a range of
densities and calculational timesteps. The density spanned four orders of mag-
nitude, with values of 0.01 kg/m3, 1 kg/m3, and 100 kg/m3. At each density,
three different timesteps were used: one of the same order as the radiation
characteristic time found from Equation (83), one two orders of magnitude
lower, and one two orders of magnitude larger.

For the purpose of testing, both the specific heat capacity and the Plankian
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mean opacity were considered constant and assigned values using the LTE
SESAME tables accessed by MACH2. The specific heat capacity was defined
as 2.8 x 108 J/kg-eV, while the opacities were density dependent and taken as
the tabular value given at 100 eV (at 100 eV, hydrogen is fully ionized and the
specific heat capacity is essentially the same value for all three densities in
the temperature range of interest), The densities, corresponding timesteps,
Plank mean opacities, characteristic timescales, and the steady state temper-
atures for the test runs are shown in Table 5.2. The value of the steady state
temperature was found solving Equation (82) for the initial parameters using
MATHEMATICA [56,57].

Table 5.2. Electron-Radiation coupling parameter survey

o (kg/m?) dt (s) K, (m’/kg) 1. (s) Ty (€V)
m

10

01 1074 223x103 | 1.49x 10% 553
106
106

1.0 108 0.218 1.53x 108 95.9
10-10
10-10

100 10712 16.7 2.0x 1012 100
10714

Figures 5.9 through 5.14 plot the temperature profiles of the material and
radiation field as a function of time for the timesteps given in the above table
using both the explicit and implicit difference methods. In Figures 5.9, 5.11,
and 5.13, where solutions are found from the explicit difference form, the solu-
tion is observed to oscillate about the steady state value for the largest compu-
tational timestep. This oscillatory behavior is caused by the multiplication
term containing At in the difference Equations (79) and (80). If At has too

great a value, this multiplication causes overshooting of the solution. Oscilla-
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tions then arise at subsequent times from the opposite signs of the coupling
term, (a RT:_,1 - E), in Equations (79) and (80). For a density of 1 kg/m3 and 100
kg/m3, this behavior has disappeared at the next smaller timestep which is on
the order of the relaxation time. (See Figures 5.11 (b) and 5.13 (b).) Physically,
the disappearance of the oscillations in going from a timestep two orders of
magnitude larger than the relaxation time to a timestep of the same order as
the relaxation time, can be interpreted as a stability constraint - computa-
tional timesteps should not exceed the characteristic time at which the radia-
tion field relaxes to the steady state solution.

Although the explicit solutions in Figures 5.11 (b) and 5.13 (b) are stable at
smaller timesteps, there exists an artificial sharp transition in the solution at
the first calculational time. This inaccurate behavior is removed as seen in
Figures 5.11 (c) and 5.13 (c) when an even smaller timestep is taken. For all
three densities investigated, the solutions are the most accurate at the small-
est timesteps as evidenced by Figures 5.9 (c), 5.11 (c), and 5.13 (c). Plots of the
material and radiation energy densities are shown in Figure 5.15 for all three
material densities at the smallest timestep. Clearly in all cases, steady state
solutions are reached within a few characteristic timescales. With increasing
material density, the ratio of fluid energy density to radiation energy density
becomes higher allowing the material to maintain a larger store of energy.
This is observed in Figure 5.15 (c) where the energy density of the material
remains at its initial level, while the radiation field energy density increases
substantially.

Comparing the solutions to the implicit difference equation at large
timesteps with those from the explicit expression, the oscillations found with
the explicit solutions are not present. However, it can be seen from Figures

5.10 (a), 5.12 (a), and 5.14 (a) that the implicit solution is unable to resolve the
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early radiation temperature at such timesteps, with a discrete, large transi-
tion from the initial value of the radiation temperature to a new value at the
first calculation time. In all three cases, the final steady state solution is
approached within a few timesteps. As the timestep decreases, the implicit
solution improves in accuracy, approaching the explicit one as the timestep
becomes ever smaller. This can be seen in Figures 5.10 (c), 5.12 (c), and 5.14 (c)
which mirror the corresponding explicit solutions.

The results of this study indicate that the implicit method is stable regard-
less of the timestep used. Although accuracy is sacrificed at large timesteps, it
can be improved by moving to smaller timesteps. The explicit method requires
timesteps smaller than the characteristic time for the solution to be stable. At
the smaller timesteps already required for stability, accuracy is not a problem;
the explicit solution is accurate. An examination of the total energy of the
system indicates that energy conservation is an issue at larger timesteps in
the explicit formalism. The energy in many cases was not conserved. In the
implicit method, the energy of the system was always conserved to within 1%
each cycle. Based on the above information, the difference representation of
choice for this work was the implicit difference form. With an implicit differ-
ence scheme for the electron-radiation coupling, the possibility of instability is
always avoided, producing the correct steady state solutions on adequate
timescales. Furthermore, energy is conserved throughout the time evolution of
the system. If the temporal evolution of the temperature profiles is important,
the timestep can be decreased as needed.

Two additional test problems were simulated using the implicit difference
form. The results are shown in Figures 5.16 and 5.17. Here the material was
again hydrogen and the density was taken to be 5 x 102 kg/m3. Figure 5.16

represents the implicit solution with initial material temperature of 100 eV
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and radiation temperature of 10 eV. The Plankian opacity was defined as
0.0103 m?%/kg. The steady state temperature was determined from Equation
(82) to be 72.9 eV, and the characteristic time was calculated as 6.5 x 109 s.
Figure 5.17 plots the implicit solution for initial material temperature of 10
eV and radiation temperature of 100 eV. The Plank opacity here was taken as
103 m%/kg. The steady state temperature was 75 eV with a relaxation time of
6.5 x 1010 5. In both cases the solutions reach the steady state value on the

characteristic timescales.
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5.4 Additional Benchmarking

In the last two sections, the physical processes of radiation diffusion and
electron-radiation coupling were examined separately for a static medium.
Further benchmarking involves treating these two processes together and
taking into account the actual dependence of the radiative conductivity on
material temperature. Additional complexity can be introduced by permitting
pressure gradient effects which generate fluid motion. Such test problems,
along with those in section 5.2, demonstrate the ability of the code to model
the correct physics in a regime where radiation diffusion is most applicable -
the thick regime. It is also important to examine the flux-limited form of the
radiation diffusion algorithm in a regime where the material is transparent to
radiation. Each of these issues are addressed in this section using the one-
dimensional “hot” wall problem. Specifically, the following test calculations
will be considered: (1) nonlinear one dimensional diffusion with electron-radi-
ation coupling in a static opaque medium, i.e., a radiation analog to the
Marshak wave, (2) nonlinear radiation diffusion with electron-radiation cou-
pling and hydro in an opaque, originally static material, and (3) nonlinear
radiation diffusion in an optically thin, static material.

The first test problem was designed to simulate the diffusion of a radiation
field into a lower temperature material in which electron-photon interactions
are considered as well as the temperature dependence of the radiative conduc-
tivity. This type of problem ié often referred to as a Marshak Wave [2]. The
problem setup was defined by a rectangular 25 x 10 x 1 m grid containing
hydrogen at an initial uniform density of 10 kg/m3 and a temperature of 100
eV. At this temperature, hydrogen is fully ionized so that the electron-photon

interaction process is based purely on Bremsstrahlung (free-free) collisions. In
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this case, the Rosseland mean opacity has the form [58]
3.5
XR - pr ’

and the radiative conductivity is related to the material temperature via

C 3.5
KD~§—5T .

The driving radiation field was positioned at the left boundary of the computa-
tional domain with a radiation temperature of 150 eV. The radiation tempera-
ture was set to 100 eV within the grid and at the right boundary. For these
conditions and physical domain, the material remained thick throughout the
simulation, as required for the Marshak class of problems. Furthermore, the
material energy density and radiation energy densities were initially within
three orders of magnitude (3.1 x 1011 J/m3 and 1.37 x 10° J/m3, respectively).
This enabled the material to reach its maximum absorbed radiation capacity
in minimal time, permitting the Marshak wave to propagate on a timescale
related to the diffusion time based on a material temperature of 100 eV.

The computational grid was comprised of 32 by 16 zones, giving a cell size
of 0.781 m in the direction of radiation flow. For the original material condi-
tions, the photon mean free path was 0.87 m, just over a cell length in
distance. Throughout the calculation, this value never exceeded two cell
widths - at 150 eV, the photon mean free path is 1.54 ~ 2(.781). A timestep on
the order of the radiation diffusion time across a cell, 10%, was taken.

Figure 5.18 displays the time evolution of the radiation energy density for
the Marshak Wave problem. These plots, along with those in the figures that
follow, were produced using the MACH2 graphics slice capability and graph
the cell-centered energy density as a function of position. The solution
depicted in Figure 5.18 compares favorably on a qualitative basis with compu-

tational solutions and the analytic Marshak-wave similarity solution
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described in Mihalas and Mihalas [2]. The radiation field at a given location
diffuses at a rate dependent upon the local material temperature, reaching a
steady state distribution by 3.0 x 1079 s. Slice plots of the radiation tempera-
ture and the material temperature at 10 us are shown in Figure 5.19. These
profiles are exactly the same, indicating that the radiation field and electron
fluid are in equilibrium as expected in an opaque static material. Here the
electron-radiation coupling time is on the order of 10" 5 as compared to the
cell diffusion time of 10°? s. Also shown in this figure are the photon mean free
path and the radiative flux. Clearly, the photon mean free path remains under
1.54 m.

In reality, electron-radiation coupling will also heat a material, building a
pressure gradient which induces a fluid flow. This was observed to occur in the
above problem by allowing the hydrodynamic effects caused by a material
pressure gradient to be included in the simulation. (Radiation pressure was
neglected in this calculation.) Figure 5.20 displays the radiation energy den-
sity, the photon mean free path, and the material density and velocity at 10 ps
for such a problem. A comparison of the energy density profile with the corre-
sponding profile in Figure 5.19 shows that the radiation energy distribution is
not substantially effected in this case. However, the material now has a net
flow to the right with a peak velocity of 9 km/s, and the density in the region
adjacent to the wall has decreased somewhat. The maximum value of the
mean free path has increased slightly to 1.6 m in correspondence to the den-
sity drop near the wall.

To test the flux-limited form of the diffusion coefficient, the above problem
was modified to provide material conditions which were transparent to radia-
tion. This was accomplished by lowering the initial density three orders of
magnitude to 0.001 kg/m3. At this density, the photon mean free path in the
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material was 2.5 x 10° m, substantially larger than the box size. All other con-

010 5 was

ditions were kept the same and a computational timestep of 1.0 x 1
taken. With the flux-limiter on, the radiation ceiling was set to 1.0 x 10750 g0
that this term was essentially neglected in the determination of the radiation
diffusion coefficient (Refer to Section 3.2). Thus, the diffusion coefficient in
this problem was defined by

K 4= m : 37)
E
Figures 5.21 and 5.22 display the results of this calculation. With little
interaction between material and radiation, the radiation field should propa-
gate through the material at the speed of light. This is observed in Figure 5.21
where the radiation front, defined by large |V E|, travels through the material
at a velocity close to 3 x 108m/s. In the regions preceding the front and behind
the front, the gradient in radiation energy density is small, and the radiation
diffuses through the problem domain with a diffusion coefficient defined by

the dominant of the two terms in Equation (37°)

3xpP
— .

This dependence of the diffusion coefficient on the size of the gradient in radi-
ation energy density can be seen in Figure 5.22 (a) and (c). From Figure 5.22
(a), the radiative flux at the radiation front can be calculated and compared to
that found in Figure 5.22 (d). Comparisons show that this value is cE, the
value of the radiation flux in the thin material limit. This is approximately
two orders of magnitude larger than the maximum flux of the Marshak Wave
problem shown in Figure 5.19 (d). From the above discussion, and the poor
material-radiation coupling indicated by little change in the material temper-

ature, it is evident that the flux-limiting portion of the code works properly
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under thin material conditions. This will become important in the stagnation
calculations of the next chapter where the outer regions of the toroid are typi-
cally considered thin.
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Figure 5.18. Distribution of radiation energy density along a slice in the x-direction at
(2) 1.0x 1005, (b) 5.0 x 10 5, (c) 1.0 x 10 5, and (d) 3.0 x 1073 s for the Marshak
Wave problem. Material density is 10 kg/m3 and the material temperature is initially
100 eV. The wall is at a radiation temperature of 150 eV.

123




°
"
(-]
.
~N o
. ®
Hk
o
~
~8
>
o -
A4
o
o
S
0.5 1.0 1.5 2.0 2.5
XC (M) / 10921
(a)
o
-
$
-3
”
-3
22
e
o
e
o
-]
™
0.5 1.0 1.5 2.0 2.3
XC (MY / 10e¢1
(©)

1

Fr (W/Me+2) / 100218

T, (EV) / 10es2
1.1 1.20 1.30 .40 .50

1.0 1.8
XC (M) / 10%+1

(b)

1.0 2.0 3.0 4.0 s.0 8.0

0.8 1.0 1.8 2.0 2.8
X (MY / 10es1

(d)
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initially 100 eV. The wall is at a radiation temperature of 150 eV.
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Figure 5.22. Slice plots of (a) the radiation energy density, (b) the radiation temperature,
(c) the flux-limited diffusion coefficient, and (d) the radiative flux at 5.0 x 108 s for the
thin problem illustrated in Figure 5.21. The material density is set to 0.001 kg/m3 with
the initial material and radiation temperatures at 100 eV. The wall is at a radiation
temperature at 150 eV.
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CHAPTER 6. COMPACT TOROID STAGNATION

In Section 1.2, the concept of using a compact toroid as a possible radiation
source in the keV to 100 keV range was introduced. Under suitable conditions,
the stagnation of a high velocity, high Z (high atomic number) toroid against a
stationary target will result in the conversion of a large fraction of the directed
kinetic energy into internal material energy and radiation. The spectrum of
radiation produced and total radiated energy will depend on the post stagna-
tion density and temperature of the material (determined primarily by shock
strength), and the ratio of ion-electron and electron-radiation coupling times
to the dynamic timescale of the stagnation process. In general, these values
are affected by a variety of parameters, including field strength, velocity, and
initial density. Understanding the role of such parameters upon the stagnation
process and hence radiation production is of great interest if this application is
to be successful.

In this chapter, a detailed analysis of a standard stagnation calculation is
presented. This analysis includes not only an examination of the physics
occurring during stagnation, but also additional simulations which explore
the numerical aspect of modelling the stagnation process. In particular, these
latter calculations involve varying cell resolution, adaptive grid control, com-
putational domain and radiation boundary conditions. This discussion will
then be followed by a parameter study in which the defined set of initial condi-
tions for the standard calculation, including experimental geometry, are
varied. These calculations will aid in clarifying the role of such parameters on
toroid compressibility and conversion efficiency of directed kinetic energy into

radiative yield.
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6.1 Numerical Simulations: Baseline Calculation

At present, there are many unanswered questions and unverified predic-
tions concerning the influence of various prestagnation toroid properties on
the radiative productivity of the stagnation process. As mentioned in Section
1.2, previous calculations on compact toroid stagnation involved one dimen-
sional slab simulations with a single component of the magnetic field, time-
dependent atomic physics, and multigroup radiation diffusion. These calcula-
tions neglected the two and three dimensional nature of the toroid, which arise
from the existence of three components of the magnetic field and velocity, and
the nonuniform distribution of density and magnetic field. The calculations on
the following pages include such multi-dimensional characteristics while
addressing the role of toroid mass, directed kinetic energy, magnetic field
strength, and geometry on radiative output. This is accomplished through a
parameter study which should indicate the range for optimal prestagnation
conditions, and verify qualitatively predicted trends.

The initial conditions chosen for the calculations presented in this chapter
provide both an experimentally feasible set of prestagnation values and an
optical regime in which the nonequilibrium diffusion approximation is most
applicable. In the MARAUDER compact toroid experiment, present and near
future capabilities of the experimental apparatus place the injected mass in
the 0.1 to 10 mg mass range, a factor of 3 to a factor of 20 radial compression
from an initial outer radius of 62.6 cm, and acceleration velocities in the 10 to
200 cm/pus range. For a mass of 10 mg and a compression of 20, conditions are
obtained in which the photon absorption mean free path is on the order of the
toroid dimensions. This describes a physical regimé in which radiation diffu-

sion is appropriate. Based on this, an initial set of parameters can thus be
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defined. The corresponding values of other prestagnation quantities such as
temperature and magnetic field can be inferred from formation values assum-
ing isentropic compression (See Appendix A).

The parameters for a standard baseline calculation are given in Table 6.1.
The simulation begins just prior to impact, with a Xenon-filled toroid already
having undergone a factor of 20 compression from its original state in the
MARAUDER expansion region and having been accelerated to velocities on
the order of tens to a few hundred cm/us. From the experimental geometry, a
factor of 20 compression results in a toroid diameter of 0.89 cm with inner con-
ducting wall at 2.24 cm and outer conducting wall at 3.13 cm. This degree of
compression has not yet been attained in the present experiment. However,
values indicative of prestagnation temperatures and magnetic field can be
estimated using experimentally measured formation values and qualitative
considerations concerning the physical processes that occur during the com-
pression phase. The initial magnetic field configuration is taken as force free,
defined by V x B = AB (This was discussed in Chapter 4). This is based on the
assumption that the compact toroid is allowed to relax to a Woltjer-Taylor
[46,47] state at formation and maintains this structure during volumetric
compression and acceleration [43]; this ideal configuration is a reasonable
approximation to the magnetic field. The peak magnetic field is determined
from the experimental formation value of 0.5 Tesla (at ~ 1 m initial diameter)
using isentropic relations.

The temperatures of the electrons and ions as given in Table 6.1 have been
determined using experimental measurements of the electron temperature
within the initially formed toroid. For a formation temperature of 5 eV [61], a
factor of 20 compréssion leads to a prestagnation temperature of 2 keV. This

value was calculated assuming the compression stage involves an adiabatic,
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reversible process. In reality, the compression of the toroid will be accompa-
nied by a loss in toroid energy through escaping radiation. (Interaction with
the bounding conducting walls which cause energy loss through thermal con-
duction and friction effects are small and will be neglected in this discussion.)
Free electrons interact with ions and neutrals through bound electron excita-
tion, ionization of bound electrons, and bremsstrahlung transitions. As the
toroid compresses, the material gains energy, each constituent of the material
increasing in random kinetic energy dependent on the particular species. As
the free electron population increases in energy, it simultaneously loses energy
through collisional excitation and ionization processes, and photon production
caused by free-free interactions. Since the toroid plasma is essentially trans-
parent to radiation during the compression stage, any radiation which is
produced leaves the toroid, lowering the electron temperature. Because there
is some coupling between ions and electrons, the ion temperature will also
decrease. Thus, the temperatures given in Table 6.1 are representative values
which correspond physically to a decrease in energy through radiative loss.
These temperatures relate closely to those used in the one dimensional calcu-
lations by M. Gee, et. al [12,13].

Figure 6.1 depicts the stagnation geometry used for most of the calcula-
tions presented in this chapter. Prior to impact, the toroid has been
compressed and accelerated, travelling up toward the end of a stovepipe con-
struct which has been capped by a solid wall. The structure of the out-of-plane
component of the magnetic field is shown to provide the spatial extent and
position of the toroid at the stagnation time. The three dimensionality of the
problem can be visualized by rotating the stovepipe area out of the computa-
tional plane about the axis of symmetry. This forms two concentric cylinders.

The box drawn about the end region of the stovepipe to the right of the center




Table 6.1. Initial parameters for 5 MJ baseline case

parameter initial value at t=0
toroid mass 10.0 mg
toroid velocity 100 cm/pus
Ppeak 1.85 kg/m3
(Bg)peak 2.0 MG
T, 1.0 keV
T 100 eV
Tgr 50 eV
kinetic energy 5.0MJ
magnetic energy 112kJ

Stagnation geometry
Tinner = 2.24 cm
Touter = 3.13 cm

132




224 cm ————>

3.13cm -

Figure 6.1. Compact Toroid Stagnation Geometry. Prior to stagnation, the compact
toroid has been compressed and/or focused down to an (.89 cm diameter. Depicted
is the toroid at the end of the stovepipe ready to impact the end wall. The compact
toroid spans the annular region formed by extending the conducting walls out of
the computational plane about the centerline. This produces a structure consisting
of concentric cylinders. The box at the upper right of the diagram shows the region
contained in the simulations.
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line illustrates the region that was numerically simulated. In the calculations,
the electrode walls and the end wall were assumed to be perfectly conducting,
reflecting, ideal boundaries. Specifically, the perpendicular component of the
magnetic field was defined as zero at the walls, and neither mass nor radia-
tion was permitted to flow across such boundaries. Any interaction, or
physical process occurring with or within the end wall itself, such as ablation
was ignored. The bottom boundary from which the toroid would have physi-
cally originated was considered open, providing a surface through which
mass, magnetic field, and radiation could enter or leave the computational
domain.

Figures 6.2 and 6.3 show the initial conditions for the baseline case. (Here
the values which are found with these figures and those that follow are in
units of MKSA-eV, unless otherwise noted.) The total mass of the toroid, 10
mg, was distributed such that the density isocontours follow the poloidal mag-
netic flux lines. Consequently, the density peaks in the center region of the
toroid at 1.85 kg/m3 and decreases toward the edges. The magnetic field con-
figuration was force free, with the maximum magnitude of the toroidal field at
2.0 MG (200 T). The toroid was travelling towards the target wall at a velocity
of 100 cm/us. With 10 mg of mass at this velocity, the directed kinetic energy of
the compact toroid was 5 MdJ.

The stagnation process was numerically modelled using the three temper-
ature capability of the MACH2 code. Each component of the fluid, including
the radiation field, is described by a separate energy evolution equation. The
physical processes which were accounted for in the simulation included ther-
mal conduction, radiation diffusion, magnetic field diffusion, joule heating,
ion-electron coupling, electron-radiation coupling, and of course, the hydrody-

namics (evolution of fluid flow and changes resulting from fluid flow). The
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Figure 6.2. Initial conditions of compact toroid prior to stagnation, (a) directed

velocity, (b) density.
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Figure 6.3. Initial conditions of compact toroid prior to stagnation, (a) poloidal
magnetic flux, (b) out of plane component of magnetic field.
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material properties were determined from the SESAME LTE [25] equation of
state tables accessed by MACH2. The thermal conduction and radiation diffu-
sion were carried out using a relaxation factor of 0.5 and multigrid acceleration
with the converge option. A convergence criteria of 1.0 x 10% was used to
determine the accuracy of the iterated solution. The radiation diffusion was
flux-limited throughout the calculation with a user-given radiative diffusion
ceiling of 1.0 x 105 (See Section 3.2). The magnetic diffusion was accomplished
using a relaxation factor of 0.5 and the multigrid converge acceleration tech-
nique. The convergence criteria here was set to 1.0 x 10 4

In general, the motion of the fluid upon impact is complex and cannot be
modelled in a purely Lagrangian fashion. As a consequence, the simulations
were performed using either a purely Eulerian grid treatment or Eulerian
treatment with some amount of grid adaptivity. Thus a Lagrangian step was
initially executed, followed by grid movement, if any, and convective transport
of fluid variables. A relative error of 1.0 x 10" was used to define an accept-
able solution to the implicit hydrodynamic portion of the code and an artificial
viscous pressure was included in the velocity equation to aid in modelling
shock conditions. The variables after the Lagrangian step were chosen to be
centered in time, i.e., the physical quantities going into the transport are
advanced by half the difference between the updated Lagrangian value and
the value prior to the Lagrangian step. The advection of these quantities was
then carried out using a van Leer [26] interpolation scheme for determining
fluxes at cell edges.

By default, the specific internal energy, as opposed to the total energy, is
the energy quantity that is advected in MACH2. Previous calculations indi-
cated that numerical inaccuracies caused the energy to be insufficiently con-

served during the stagnation process (See Appendix C for more discussion). To
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overcome this difficulty, the option of convecting a total energy, defined as the
electron internal plus kinetic plus magnetic, was utilized: Upon transport, the
electron internal energy is extracted from the advected value of the total
energy. This procedure allowed any energy loss caused by the inaccurate
advection of magnetic flux and fluid momentum to be placed back into the
energy of the electron fluid, solving the problem of global total energy loss.

The stagnation of the baseline case is illustrated in Figure 6.4, displaying
the evolution of the out-of-plane component of the magnetic field. As the toroid
initially strikes the end wall of the stovepipe, the material density increases
at the impact surface; individual particles adjacent to the wall prior to stagna-
tion upon impact reflect off the wall and into the incoming stream of particles
constituting the forward edge of the prestagnated portion of the toroid. This
increase in density is accompanied by a rise in internal energy as the directed
kinetic energy of the particles is converted into random thermal energy. On a
microscopic scale, this conversion occurs through collisional processes over a
small region of space adjacent to the wall. The energetic, high velocity parti-
cles disperse their kinetic energy in this region through primary and second-
ary collisions. The size of this region remains small compared to toroid
dimensions, since the particle momentum is randomized over a few mean free
paths.

The rise in internal energy is manifested in a dramatically sharp increase
in macroscopic fluid temperatures and pressure in this region. Thus, a discon-
tinuity in the thermodynamic variables, or a shock, is formed at the toroid-
wall interface. Initially, it is the ion component of the fluid which preferen-
tially gains thermal energy as the toroid passes through the shock region.

This is evident by looking at the ratio of the relaxation, or equilibration, times
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for the electron and ion fluids [6]:

1¢¢€ Z4n. /T \3/2 '
L 0.0235—-1/2—‘ (-Tf) : (84)
1:2 A n,\ti

Here the variable Z stands for the ion charge, and A, the atomic weight. Mak-
ing the assumption that the pre-stagnation temperatures for the most part
are approximately equal at 100 eV (this is actually not a bad assumption as
will be seen shortly), and taking an average ionization state of the Xenon
plasma as 25, n, = 25n;:

Tee

22700 .

T:lq
This shows that the ions equilibrate on a much faster timescale than the elec-
trons under the defined conditions. With energy relaxation times functionally
similar to momentum relaxation times [6], it is clear that the ions respond
faster overall to their surroundings over a shorter distance. The ions thus
exhibit thermal heating caused by the conversion of kinetic energy to thermal
energy before the electrons. Numerically in MACHZ2, this process is treated as
a heating of the ion fluid followed by subsequent heating of the electrons
through ion-electron coupling.

The energy gain in the ions is lost to the electron fluid despite the fact that
the coupling is poor due to the low material density at the early stages of the
stagnation; there is so much energy in the ion fluid, that even a small amount
of coupling results in a large energy exchange between the two species almost
instantaneously. The same phenomenon occurs with the electron-radiation
coupling. Hence, at the onset of stagnation, a substantial fraction of the

directed kinetic energy of the incoming plasma is converted into thermal

energy and subsequent radiation: the ions lose a portion of their energy to the
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electrons, the electrons, in turn, lose most of the energy gained from their
interaction with the ions to the radiation field, and the toroid radiates. The
amount of radiation emitted as a result of these processes monotonically
increases as the toroid continues to undergo compression, fueled by additional
mass and further enhanced by improved coupling as the material there cools
via radiative losses.

Figures 6.5 (a) and (b) are contour plots of the material density and radia-
tion temperature, respectively, at 1.0 ns. Slice plots of the density, pressure,
electron and ion temperatures are also shown for this time in Figure 6.6. The
slices were taken vertically along the direction of motion through the middle
of the toroid. The right boundary of the plot defines the target wall and the left
boundary, the bottom of the computational box of Figure 6.1. The tempera-
tures have been plotted on a logarithmic scale. From Figures 6.5 and 6.6, it
can be seen that a large fraction of the toroid has not yet compressed at 1.0 ns.
The shock region is very distinct and extends over a 0.5 mm distance adjacent
to the wall as shown in the slice plot of the material pressure. The ion temper-
ature ranges from 63 keV along the wall in the shocked region decreasing
rapidly down to approximately 100 eV in the prestagnation material. The elec-
tron temperature along the wall is 130 eV, but ranges from 100 eV in the
section of the toroid furthest from the impact region to 125 eV near the shock
interface.

An examination of the ion and electron slice plots indicate that even before
a large portion of the toroid has been compressed, the ions have cooled
substantially from 1 keV down to 100 eV, equilibrating with the electron fluid.
This suggests that the initial value of 1 keV for the ion temperature was
chosen somewhat large for the other physical conditions assumed. As the lead-

ing edge of the toroid passes through the shock, a radiation front propagates
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Figure 6.5. Contour plots of the (a) density and (b) radiation temperature at 1.0 ns.
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Figure 6.6. Slice plots of the (a) density, (b) pressure, (c) electron temperature,
and (d) ion temperature at 1.0 ns. The slices are taken along the direction of
motion through the center of the toroid. The right boundary defines the target
wall, while the left boundary is the open boundary at the bottom of the
computational box of Figure 6.1.
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outward from the wall toward the backside of the plasma ring. The radiation
front moves through the prestagnated material, coupling with the electrons
and raising the electron temperature slightly across the toroid. Since the elec-
trons near the shock interface interact with the radiation front initially, they
absorb most of the energy available through coupling. As a result, their
temperature is somewhat higher than that of the electron fluid at the rear of
the toroid. This was mentioned above and is observed in the slice plot of the
electron temperature. The Plankian mean free path, which is a measure of the
ability of the radiation field to couple with the electrons, is approximately 3.0
mm over the prestagnated region which spans a length of 6.0 mm.

Peak compression occurs at about 6.2 ns. Figure 6.7 shows the density,
toroidal magnetic field, radiation temperature, and radiation flux profiles at
this time. Slice plots of the density, pressure, electron temperature, and ion
temperature are also displayed in Figure 6.8. At peak compression, the
density has a maximum value of 19 kg/m3 at the wall, more than a factor of 10
larger than the initial peak density in the toroid. The ion temperature in the
stagnation region has now dropped, ranging from approximately 200 eV in the
neighborhood immediately adjacent to the wall to 10 keV at the back edge of
the fully compressed toroid. The corresponding electron temperature varies
from 145 eV at the wall to 160 eV at the low density toroid edge, while the
radiation temperature maintains approximately 145 eV throughout the
shocked region.

The decrease in ion temperature has taken place gradually during the
stagnation process as more material gathers in the vicinity of the impact
region. Up to a density of about 3.5 kg/m3, the ion-electron coupling is rela-
tively poor and only a certain fraction of the ion energy can be lost through

coupling with the electron fluid. This is observed through the large differences
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Figure 6.7. Contour plots of the (a) density, (b) out-of -plane component of the magnetic
field, (c) radiation temperature, and (d) radiation flux at peak compression - 6.2 ns.
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Figure 6.8. Slice plots of the (a) density, (b) pressure, () electron temperature, and
(d) ion temperature at 6.2 ns. The slices are taken along the direction of motion
through the center of the toroid. .
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in ion and electron temperatures. At higher densities, the ion-electron cou-
pling becomes sufficiently strong so that by peak compression, the ion
temperature has been reduced to within a factor of 1.5 of the electron temper-
ature. However, at the back edge of the compressed toroid, where the density
is close to 1.0 kg/m3, the coupling is still fairly weak and the ions maintain a
much larger temperature. Inspection of the magnetic field contour reveals
that the magnetic field strength has peaked to a value of 14.0 MG (1400 T), a
factor of 7 larger than the prestagnation value. The radiated power is 1.6 x 10 14
W and the total radiated yield at this time has reached 3.7 MJ.

An estimate of the shock Mach number can be made for this problem using
prestagnation conditions and the perfect gas equation of state. The Mach
number is defined as [62]

M = (85)

Q'C
N O

where v is the shock velocity and c, is the sound speed, or acoustic speed, of
the prestagnated material. The shock speed is essentially the velocity of the
compact toroid, 100 cm/ps or 108 m/s. This is the speed that an observer sitting
in the toroid frame would measure as the shock moves outward from the wall
and toward the observer. For a perfect gas, the sound speed can be written as

[53]

¢, = (YRT)1?2 , (86)

with v a dimensionless quantity defined by the ratio of specific heats, R the
specific gas constant for Xenon (R ~ 63 J/kg-deg kelvin), and T, the electron
temperature (deg kelvin) in the prestagnated region of the toroid. From
kinetic theory, yis equal to 5/3 for a monatomic gas such as Xenon. Using this

information and an electron temperature of 100 eV, the sound speed is then
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calculated as 10% m/s. The value, along with the shock speed, gives a Mach
number of 100, indicating that the shock is quite strong. -

For a perfect gas and uniform planar one dimensional flow, the strong
shock condition leads to a simple relationship between the shocked (com-

pressed) material density and preshocked (prestagnated) material density

given by [62]

Ps _7+1 (87)
p

where P, is the initial toroid density. For a monatomic gas in which ionization
and radiation effects do not appreciably contribute to the internal energy (and
hence specific heat), yis 5/3 and this ratio is 4. In the simulation of the base-
line case, this ratio is approximately 10, over a factor of two greater than that
predicted by Equation (86) with y = 5/3. (Peak density reached by the material
component of the stagnating toroid is 19 kg/m3 compared to 7.4 kg/m3.) This
leads to an “effective Yy’ [18] of 11/9 or 1.22 and is a direct consequence of the
ionization and excitation of Xenon electrons as the material passes through
the shock, together with the radiative cooling of the stagnation region. Any
initial kinetic energy that goes into the ionization and excitation of the plasma
is no longer directly available for thermal energy. This keeps the material
pressure at a lower value than it would otherwise have, and further compres-
sion can occur. Radiative cooling also prevents the material pressure from
increasing as rapidly, thereby allowing even additional compression.

Clearly radiation losses will play an important role in the degree to which
a compact toroid compresses during stagnation. The formal relationship given
by Equation (86) is based on treating the shock as a adiabatic discontinuity. In
this derivation, the energy conservation eqﬁation does not include any sink or

source terms. Specifically, a radiative loss term is not accounted for in the
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equation. The inclusion of such a term would lead to a higher compression
ratio than that predicted from the strong shock condition (86) with a vy of 5/3.
As the toroid radiates, the material components cool, losing thermal energy
and thus pressure. As long as the total pressure (material + magnetic) in the
stagnation region is smaller than the dynamic pressure exerted on it by the
incoming flow, the toroid will continue to collapse, increasing in density. It is
the fact that the toroid radiates significantly during compression that contrib-
utes to further collapse leading to higher densities. This, in turn, leads to
greater radiation rates and overall higher radiative yield. It is interesting to
note that for the stagnation parameters of the baseline case, it is actually the
magnetic pressure which halts the toroid compression; the magnetic pressure
is over a factor of twenty greater than the material pressure at peak compres-
sion (1.5 x 1012 J/m3 compared to 5.6 x 1010 J/m3).

By 10 ns, the toroid has expanded to twice the size it had at peak compres-
sion and is beginning to move away from the target wall. The peak density in
the toroid has now dropped to 8 kg/m3, while the material and radiation
temperatures within the toroid have cooled substantially, equilibrating at
approximately 80 eV. Figure 6.9 shows the contour plots of the density and
radiation temperature at this time. A comparison between the density profile
in Figure 6.9 (a) and the magnetic field contour at 10 ns in Figure 6.4 reveal
that the material distribution and magnetic field structure are closely coupled,
i.e., the material is frozen to the field lines. This is the case throughout the
whole stagnation process, suggesting that the magnetic field could play a
significant role in effecting the degree of toroid compression. The influence of
magnetic field strength on stagnation will be investigated later in this chapter.

The bulk of the radiation emitted during the stagnation process occurs
within a time span of 10 ns, basically the time it takes for the toroid to fully
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Figure 6.9. Contour plots of (a) density and (b) radiation temperature at 10 ns.
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compress and then expand outward to a quarter of its original size. The total
radiation energy output computed by 10 ns is 4.77 MJ. In terms of the initial
directed kinetic energy of 5.0 MJ, this gives a conversion efficiency - conver-
sion of kinetic energy into thermal energy into radiation - of 96%, indicating
that at these initial conditions, the toroid is a very efficient radiator. The
kinetic energy that is not converted directly into thermal energy goes into
compressing the magnetic field (magnetic pressure resists the compression)
and into the rotational velocity of the toroid ( (J x B) 5 force), which develops
as the toroid impacts the wall. An estimate of the energy utilized for this latter
process can be obtained by looking at the total rotational kinetic energy. From
numerical diagnostics, this value is 28.3 kdJ, and is a small percentage of the
directed kinetic energy. An additional loss mechanism is also provided by joule
heating. Diagnostics indicate that the energy associated with this process is
about 164 kJ, again a small percentage of the kinetic energy.

A plot of the radiated power, as measured from the bottom boundary of the
computational domain, is displayed as a function of time in Figure 6.10 (a).
Initially, the toroid is emitting radiation because (1) the electron fluid has a
predefined non zero temperature and (2) the electrons are also radiating any
additional energy obtained through coupling with the ions. As the electron
temperature decreases through radiative losses, the available energy in the
electron fluid is lowered and a decrease in radiated power is observed. Around
0.4 ns, the radiation caused by the impact of the leading edge of the toroid
with the wall reaches the back boundary and begins to dominate the radiation
rate. The radiated power is then observed to turn over and increase monotoni-
cally with time.

During the early stages of compression, the material density and electron

temperatures within the stagnation region are such that the ion-electron and

151




electron-radiation coupling is not very efficient. At 1 ns into the stagnation,
the ion temperature is 63 keV, the electron temperature 398 eV, and the radia-
tion temperature, 133 eV. The large difference in electron and radiation
temperatures at this time can be attributed to the poor coupling. The Plank
mean free path at this time is 8 cm, over 8 times the length of the prestag-
nated toroid. Thus, it is difficult for the electrons to radiate any of their energy
away (via coupling with the radiation field), and the radiation that is produced
at TR, is much lower than that of the electrons; the fraction of the toroid which
has undergone compression radiates as a volume radiator [18].

Even though the coupling is initially poor, some of the energy in the ion
fluid is still transferred to the electrons. The electron temperature conse-
quently rises, and a portion of the associated energy goes into the radiation
field. Because of the energy storage capacity (i.e., large specific heat) of the
electrons, the amount of energy gained from the ions and lost to the radiation
field does not significantly change the electron temperature. As a result, any
increase in density leads to improved coupling. This is particularly true for
the electrons and radiation field, and an increase in the radiation rate is
observed as the stagnation progresses.

At 1.4 ns into the stagnation, the density has increased further and the
Plank mean free path in the compression region has gone from a value of 8 cm
to approximately 1 cm. This improved coupling can be seen in the values of the
electron and radiation temperatures, 172 eV and 142 eV, respectively. (Within
0.4 ns, the temperature difference went from a factor of 3 down to 30 eV.) This
jump in the coupling efficiency has been traced to the Xenon equation of state
tables and is speculated to be a real effect caused by the change in absorption-
emission properties as the outer bound electron distribution shifts from a filled

L shell to a partially filled M shell. This is illustrated in Figures 10 (c) and (d).
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Figure 6.10.(a),(b). Plot of (a) Radiated Power vs. Time for the 5 MJ kinetic energy
baseline case and (b) Plank distribution at 4.2 ns, time at which radiated power peaks.
Electron temperature here is 164 eV.
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with the right side of the figures defining the stagnation wall and the left side, the open
flowthru boundary. The plots indicate that in going from an ionization state of Z ~ 43
to a state with Z = 31 (from a filled L shell to a partially filled M shell), the bound
electron distribution significantly modifies (increases) the opacity and the Plank mean
free path drops rapidly from 8 cm down to 1 cm.
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In any event, the improved coupling forces the electron and radiation temper-
atures to rapidly move closer together. This leads to a decrease in the rate of
change in radiation energy density and is responsible for the visual transition
in the slope of the radiated power curve.

With improved coupling, the electrons are able to share more of their
energy with the radiation field, and‘as noted, the electron temperature drops.
As the toroid continues to compress, the density increases and the Plank
mean free path becomes correspondingly smaller. By 2 ns the Plank mean free
path is on the order of the stagnation region. The photons originating within
this region are thus more likely to be absorbed, re-emitted, and scattered as
they travel, and the stagnation region becomes more like a surface emitter
radiating at a temperature Ty = T,. With further compression, this value
becomes even lower, reaching a minimum of about 0.1 mm at peak compres-
sion. Throughout the rest of the stagnation, i.e., up to 20 ns, the Plank mean
free path never gets above 1 mm, and the compressed toroid continues to
resemble a surface emitter.

As shown in Figure 6.10 (a), the peak in radiated power occurs at 4.2 ns
and is 8.37 x 1014 W, By this time, a large fraction (~ 95%) of the toroid mass
has been compressed, and the source of converting directed kinetic energy to
thermal energy depleted. In addition, a large portion of the energy contained
in the ion fluid has already been transferred to the electrons and radiated
away. Hence, as the stagnation proceeds, the energy remaining in internal
energy becomes increasingly smaller and the amount of emitted radiation
begins to decline. The radiation rate has dropped to 5% of the peak value by
the time the toroid’s outward expansion is visually significant at 10 ns. The
full width of the radiation pulse at half-maximum value is 5.8 ns.

At peak radiated power, the electrons and radiation field are essentially in
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equilibrium and to first order, the photon distribution can be can be deter-
mined using the Plank function evaluated at the electron temperature. Figure
6.10 (b) plots the Plank distribution at 4.2 ns using an electron temperature of
164 eV. The peak in the distribution occurs at a temperature of 457 eV. The
amount of energy being emitted above 1 keV can be calculated by integrating
the Plank distribution over the related frequencies (energies). This value has
been estimated as 114 kJ.

Within the first few ns of stagnation, the absorption mean free path
throughout the toroid is typically two to three times larger than either the
prestagnation region or the shocked region at the wall. As a result, radiation
leaves the system via flux-limited diffusion at essentially cE [2,14]. Around
peak compression, however, the absorption mean free path in the neighbor-
hood of the wall is comparable to the compressed toroid dimensions there.
Under these conditions, the radiative conductivity has a significant contribu-
tion from the absorption opacity term of Equation (37). At even later times,
after the toroid has begun to expand, this opacity term becomes even more
important. The decrease in the absorption mean free path in these instances,
indicates that in the latter stages of stagnation the radiation is transported
via diffusion in some parts of the computational domain.

From the above discussion, it is evident that the material-radiation cou-
pling and the radiation transport both move through different regimes during
stagnation. Early in compression, the density is low and the ion-electron, elec-
tron-radiation coupling are poor. The ion, electron, and radiation tempera-
tures are not equal. At the same time, the low density and high electron
temperatures result in a large absorption mean free path and the radiation is
free streaming. Later in the compression, the density is high enough that the

electrons and radiation field have come into equilibrium and the absorption

156




1

mean free path is about the length of the stagnation region. In this case, the
radiation travels through the stagnation region somewhere between free
streaming and being diffused. By expansion, the mean free path has finally
become smaller than the toroid dimensions, and an equilibrium diffusion
regime is approached. Because of these various stages, modelling the physics
in the stagnation process requires a ’model which can extend across all of these
regimes. This can be accomplished using a flux-limited nonequilibrium diffu-
sion model.

As already mentioned, the prestagnation temperatures chosen to initialize
the numerical simulation of the stagnation process were based on a number of
assumptions and qualitative arguments concerning volumetric compression.
The results of the baseline case, imply however, that these values may not
accurately depict the conditions just prior to impact. This seems to be particu-
larly true for the ion temperature. An examination of the temperature profiles
reveal that within the first ns, before a significant fraction of the stagnation
has taken place, the ions have rapidly cooled to 100 eV and the electrons to 90
eV. This suggests that these latter values might be more appropriate in defin-
ing the starting conditions of the simulation. This information also brings up
the question of how strongly the choice of (reasonable) initial temperatures
influence the outcome of the physics in the stagnation region and the subse-
quent radiation properties. To answer this question, a number of compact
toroid stagnation calculations were run with varying initial temperatures.
Table 6.2 list the stagnation runs and the temperatures assigned to the ions,
electrons, and radiation field. For all of the calculations except ct4 and ct5, the
electron temperature is taken to be 100 eV.

Table 6.3 shows the total radiated yield at 1 and 10 ns into each run.
Clearly, the range in assigned values of temperatures change the radiated

157




Table 6.2. Initial temperatures for each run

simulation (Te)init (Tinit (TR)init
ctl 100 eV 1keV 50eV
ct2 100 eV 100 eV 50eV

- ct3 100 eV 10 keV 50eV
ct4 70eV 1keV 50eV

ct5 70eV 100 eV 50eV
ctb 100 eV 1keV 100 eV

Table 6.3. Total radiated yield for each run

simulation | E;(1.0 ns) | E;;(10.0ns)
ctl 173 kJ 4.77MJ
ct2 164 kJ 476 MJ
ct3 270 kJ 4.87MJ
ct4 132 kJ 4.73M]
ctS 123 kJ 4.72MJ
ct6 191kJ 479 MJ
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yield by 10 ns only slightly. This small difference originates early in the simu-
lation as can be seen from the radiation output at 1 ns. The higher the temper-
atures, the larger the internal energies, making available more energy that
could be initially radiated away. Figure 6.11 is a plot of the radiated power as
a function of time for the ctl, ct2, and ct3 runs. From this figure, it is evident
that for most of the stagnation the radiated power is the same. The discrep-
ancy in the power curve occurs within the first 2 ns where the radiation rate is
governed by the predefined values of temperature.

The details of the radiation loss in the first ns or so is an artifact of the
initial temperatures, and as such, merits some discussion. In the first three
calculations described in Table 6.2, the ion temperature is permitted to vary
between 100 eV and 1 kev. In each case, a decline in the radiation rate is
observed before the radiation emitted from the stagnation process takes over
and the radiation rate rises. As indicated in the discussion of Figure 6.10 (a),
this corresponds to the fact that the initial temperatures are set to an artifi-
cially large value and the electrons continue to radiate the associated energy
away. As the electrons radiate, they lose internal energy. If they are not
supplied with enough energy from the ion component of the fluid, they will
continue to radiate less and less. This results in a decrease in the radiated
power. With the ion temperature at 1 keV, the electrons have a source of
energy and the radiation rate is somewhat larger than in the ct2 calculation.
In the run of ct3, the radiated power rapidly increases then bégins to drop
(refer to Figure 6.11). This initial increase is caused by the 10 keV ion temper-
ature heating the electron fluid faster than it can radiate the energy away.
Note that the radiated power does not decrease as much as in the ctl and ct2
runs. As with the ctl calculation, this can be attributed to the continual addi-

tion of energy from the ions to the electrons.
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The dip in the radiated power curve found in the first three calculations
can be removed by setting the input value of the electron temperature to 70 eV.
This has been done in the ct4 and ct5 runs and is shown in Figure 6.12. Here
the ion temperatures of 100 eV and 1 keV made only a small difference in the
amount of initial radiated power, with the larger ion temperature giving a
slightly overall higher radiation rate. Out of curiosity, a final calculation, ct6,
was performed with a radiation temperature of 100 eV as opposed to 50 eV.
This is compared with the baseline calculation in Figure 6.13. Initially, the
radiated power is over a factor of two larger than that in the baseline case (485
TW as opposed to 180 TW). This indicates that a radiation temperature of 100
eV is unrealistically large.

The temperature survey considered above reveals that the range of tem-
peratures examined did not strongly influence the values of the radiated yield
or the radiated power. This also holds true for the material and magnetic
properties in the stagnation region and was observed in the plot and slice files
at 1, 6 (near peak density), and 10 ns. For this reason, the original choice of
temperatures was kept in the calculations which follow, with the understand-
ing that these values were overestimated. Another means of approximating
the prestagnated temperatures can be obtained by simulating the evolution of
a zero velocity toroid at the baseline conditions. Figure 6.14 shows the elec-
tron and ion temperature profiles at 0.2 ns, close to the time the stagnation
begins. In this case, the calculation prescribes an initial temperature of about
85 eV for the electrons and 95 eV for the ions, rather than the 100 eV and 1

keV considered.
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Figure 6.14. Contour plots of (a) electron and (b) ion temperature at 0.1 ns.
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6.1.1 Role of Numerical Resolution in the Baseline Case

An investigation into the role that numerical resolution plays in modelling
the stagnation physics has been carried out on the baseline calculation. Table
6.4 lists a set of computations performed using the baseline conditions but
varying the number of cells across the toroid. For each run, the same number
of cells were defined along both spatial directions. In the first three calcula-
tions, the grid was kept fixed throughout the simulation, while in the last cal-
culation, ct9, the grid was allowed to adapt to the material density. In this
latter case, the number of cells remained constant, but the cell shape and size
were permitted to vary, expanding or compressing depending on the density
distribution. The calculation represented as ct1 in Table 6.4 is the standard
stagnation run which has been analyzed up to this point. This simulation has
been based on a resolution of 32 x 32 zones.

Table 6.5 presents the values of the density and time at peak compression
for each run, and the total radiated yield at 10 ns. These results indicate that
with decreasing resolution (fewer number of cells), peak compression occurs
later in time and the compression itself becomes less severe. However, this
trend does not appear to effect the overall radiated yield. The degree of com-
pression observed throughout each simulation is related to the cell size and is
a direct consequence of the finite differencing of the divergence of velocity term

in the mass continuity equation:

dp -
— = —pV. (88)
I pV.v .

This can be seen by writing a simple finite difference form of Equation (87). For
uniform flow in the y-direction and a forward difference approximationto V - v:

n+1 n ij At n n 89

i,J

165




Table 6.4. Resolution parameters for each run

simulation #of cells | grid motion
ct7 16 x 16 stationary
ctl 32x32 stationary
ct8 64 x 64 stationary
ct9 32x32 adaptive

Table 6.5. Results of resolution calculations

simulation (p) b Eo«(10 ns)
ct7 12 kg/m3 8.4 ns 4.776 MJ
ctl 19 kg/m3 6.2 ns 4768 MJ
ct8 28 kg/m> 5.6 ns 4773M]
ct9 19 kg/m3 6.0 ns 4.779 MJ




During the first half of the stagnation, Vi i+

and from the above equation, the updated density is always increasing. The

1 <V in the vicinity of the wall

amount by which the density is incremented is indirectly proportional to the
cell size Ay. Thus as the cell size becomes increasingly smaller, i.e., the grid
becomes more refined, the density becomes correspondingly higher for fixed
At. On the other hand, as the cell size is made larger, i.e., the number of cells
decreases, the region near the wall is not as well resolved and the density
there is underestimated.

The delay in peak compression observed in going to lower resolutions is
directly related to the amount of compression the material undergoes with
each calculational timestep. A coarser grid will naturally take longer to reach
maximum compression, since in this case, the density at the wall increases at
a slower rate than its higher resolution counterpart. In addition, the larger
cell size contains more mass. As a result, the density at peak compression is
smaller at lower resolutions. Figure 6.15 illustrates the influence of cell reso-
lution on compression by displaying the density profiles at 1.0, 3.0, and 6.0 ns
for the runs of ct7 and ct8. The difference in the amount of compression
between the two calculations is noticeable.

A comparison of the output from the ct9 calculation with that of ct1 shows
little variation in stagnation values. This is most likely due to the fact that in
the former case the cell concentration in the region adjacent to the wall was
not sufficiently higher than that of ct1. Stated another way, the resolution was
not significantly modified at the degree to which the grid was allowed to adapt
and the calculations therefore produced similar results. In moving to 64 cells,
however, the stagnation region contains a larger number of cells and the com-
pression values are much higher. Clearly the improved resolution gives a

somewhat different picture of the physics in this region. The physics is, of
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Figure 6.15. Density profiles at 1.0, 3,.0 and 6.0 ns for (a) 16 and (b) 64 cell resolution.




course, related to the shock formed near the wall and the real numerical issue
under these circumstances is the ability to resolve the shock over a small grid
scale.

Typically a fluid code such as MACHZ2, tends to spread a shock over three
or four zones in an Eulerian calculation [14]. This smearing is caused by an
artificial viscosity model. Under steady state conditions, the Rankine-Hugo-
niot relations are satisfied across the shock and the modifications made by the
shock to the material is given correctly. Within the shock structure itself, no
attempt is made to model the physics precisely, but only to provide a smooth
qualitative transition in material properties across the interface region
between upstream and downstream flows [2]. As a consequence, the higher
the resolution, the smaller the spatial width of the shock, and the narrower
the region where the physics may not be quantitatively correct.

In the stagnation problem, the shock is very close to the wall and the tran-
sition region may actually extend up to the wall boundary. It is therefore
reasonable to believe that the values being reported in the cells adjacent to
the wall become increasingly inaccurate as the resolution in this region
decreases. Inevitably, this relates back to the hydrodynamic terms of the finite
difference equations for the evolution of the mass, momentum, and energy.
With increasing resolution, these terms should numerically change the ther-
modynamic properties of the material by even larger amounts over even
smaller regions. This is exactly what is observed in the runs of Table 6.4.

From the above discussion, improved resolution should lead to a more
accurate description of the physics in the stagnation region. However, such
resolution comes with a demand for extensive cpu time. For a single calcula-
tion this is not much of an issue. But with a parameter survey, where multiple

calculations are required, this can be time consuming and may not be the
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most efficient approach. As already noted, the effect of the shock in the stag-
nation region on the overall large scale structure of the problem is always
modelled correctly. This is evidenced in the radiated yield for each calculation.
If the radiated yield and other properties of the entire system are of the most
interest, then a lower resolution may be appropriate. This is the point of view
taken in this dissertation. For the calculations which follow, a grid resolution
of 32 by 32 cells is assumed. This resolution has been found to provide reason-

able results with a relatively quick computational turnaround time.
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6.1.2 The Role of Radiation Boundary Conditions and Computational

Geometry on the Baseline Case

The last calculations of this section consider the influence that radiation
boundary conditions and computational geometry have on the outcome of the
simulations. In the previous calculations of the baseline case, the radiation
field was permitted to flow only through the bottom boundary, the other three
boundaries being reflective. This suggest that some fraction of the radiation
may be prevented from escaping the problem as rapidly. In addition, the stag-
nated material is confined by the geometry specified in the initialization of the
calculation. In all likelihood the compressed toroid, if not bounded by the
inner and outer conducting walls, would extend further along the impact wall.
This might lead to a change in compression and radiated yield. In any event,
both of these issues could numerically influence the radiating ability of the
stagnation process.

Figure 6.16 (a) illustrates the radiation boundary conditions used in previ-
ous calculations of the baseline case. In these calculations, only the bottom
boundary of the computational box is open to radiation flow as indicated by
the radiation flux vectors pointing outward from that location. Figure 6.16 (b)
depicts the radiation boundary conditions of a calculation in which the bottom
boundary and side boundaries are each considered to be open to radiation. In
this instance, the wall is the only boundary which is reflective. A comparison
of this calculation with that of the one radiating boundary shows they both
produce essentially the same stagnation results. Peak compression in the two
cases occurs at the same time with a peak density of about 19 kg/m3. The
other thermodynamic variables evolve in much the same manner.

Figure 6.17 plots the radiated power as a function of time for the two calcu-
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Figure 6.16. Plots of the radiative flux indicating radiation boundary conditions with
(a) one radiating boundary and (b) three radiating boundaries.
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lations. There is only a small difference between the two curves, caused by the
initially higher radiation rate in the three boundary problem. Because more
radiation can leave through three boundaries as opposed to one, the three
boundary problem cools more rapidly. At later times, this evidenced in a lower
radiation rate. Here the total radiated yield at 10 ns is 4.774 MJ as opposed to
4.768 MJ calculated in the one boundary case. This simulation plainly demon-
strates that the stagnation properties along with the radiated output were not
appreciably influenced by the inclusion of two additional radiation flowthru
boundaries.

To estimate the effect the original “restrictive” geometry has on the stagna-
tion process, the inner conducting wall was extended to the center axis, a
distance of 2.24 cm. The outer conducting wall was also extended by the same
amount. This provided ample space for expansion perpendicular to the direc-
tion of motion. Figure 6.18 depicts the revised stagnation geometry and the
boundaries that are open to radiation flow. Both the top boundary and the left
boundary, as defined by the centerline, are considered to be perfectly reflecting
to radiation. The position of the toroid at the beginning of the simulation is
indicated in Figure 6.19, along with the field configuration. It should be noted
that the only difference in this calculation and those discussed above involves
the width of the stagnation region and the area through which the radiation
can flow out of the computational domain; neither the location of the toroid
with respect to the centerline or its physical dimensions has changed.

A comparison of this run to the one boundary and three boundary calcula-
tions, illustrated by Figure 6.16, shows relatively close agreement in stagna-
tion properties and total radiated yield. Figure 6.20 displays the density and
radiation temperature at peak compression. From the density profile, it can be

seen that the compressed toroid has extended a little beyond the original posi-
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T = 0.000E+00
DENSITY

-= 1.0E-03 B= 4.1E-01 D= 8.2E-01
F= 1.2E+00 H= 1.6E+00 += 1.8E+00

T = 0.000E+00
MAGNETIC FIELD -- THETA COMPONENT

-= 0.0E+00 B= 4.6E+01 D= 9.1E+01
F= 1.4E+02 H= 1.8E+02 += 2.0E+02

Figure 6.19. Plot of the (a) initial density and (b) initial toroidal field
profiles for the calculation using the extended stagnation geometry.
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T = 6.201E-09
DENSITY

-= 2.8E-05 B= 4.3E+00 D= 8.7E+00
F= 1.3E+01 H= 1.7E+01 += 2.0E+01

T = 6.201E-09
RADIATION TEMPERATURE

= 5.0E+01 B= 6.9E+01 D= 8.9E401
1.1E+02 H= 1.3E+02 += 1.4E+02

L]
noi

Figure 6.20. Plot of the (a) density and (b) radiation temperature at peak
compression for the calculation using the extended stagnation geometry.
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tion of the boundary walls (denoted by the dotted lines), and the peak density
is slightly higher. This does not appear, however to produce any large changes
in material properties within the stagnation region. The radiation tempera-
ture at this time is lower overall by about 10 eV (140 eV compared to 150 eV).

The radiated power curve for this calculation along with that of the stan-
dard (one radiating boundary) calculation is shown in Figure 6.21. In this
case, denoted as “3block”, the radiation rate peaks at a 4% lower value. This
occurs because some portion of the initial directed kinetic energy actually goes
into spreading the compressed toroid outward along the stagnation wall
instead of increasing its internal energy. This is compounded by the fact that
radiation can leave the computational domain through the bottom and right
boundaries. Thus, not only can the toroid cool faster, but some fraction of
kinetic energy that would have led to increased thermal energy and then radi-
ation is no longer available.

Based on the information presented in the above two paragraphs, the
extension of the inner and outer conducting walls, like the added radiating
boundaries, has only a small effect on the stagnation process. This might not
be true for higher velocity toroids, which could spread over a broader area
allowing for further compression. Nonetheless, these two calculations suggest
that their incorporation into the initial problem makes little difference in the
outcome of the stagnation physics.

This concludes the study of the baseline case. The rest of the chapter is
devoted to a parameter survey which covers a range of projectile velocities,
field strengths, and mass. A change in the stagnation geometry will also be
considered. The analysis provided in this section will then be used to interpret
these findings and enable conclusions to be reached concerning the influence

of these parameters on the stagnation process and radiation properties.
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6.2 Numerical Simulations: Parameter Survey

The results of the baseline calculation presented in the last section demon-
. strated the radiative capability of a stagnating, 5 MJ Xenon compact toroid.
From that discussion, the radiation production was described in terms of the
total amount of radiation energy output, the radiated power with time, and
the radiation pulse width. Such properties, along with the photon energy dis-
tribution, ultimately depend upon the prestagnation conditions in the toroid.

Prior to impact, the toroid has a substantial amount of energy stored in the
form of directed kinetic energy. During stagnation, this can be converted into
thermal energy which can then be radiated away. The initial amount of energy
available for conversion is given by the kinetic energy per particle and the
number of particles available. As the shock interface is encountered, this
energy is partitioned into internal energy of the ions and electrons, magnetic
field, radiation field, and ionization. The degree of partitioning depends on the
hydrodynamics and the ion-electron, electron-radiation coupling. For the stag-
nation problem, the velocity of the material upstream of the shock (i.e., region
adjacent to the wall) is essentially at rest and the kinetic energy in this region
is zero. At this point, the ion temperature is substantially increased, and the
final radiated yield depends upon the ability of the ions to efficiently couple
with the electrons, and the electrons with the radiation field. In both
instances, the coupling is a function of stagnation densities and temperatures.
These, in turn, are related to the initial density of the toroid and the shock
strength.

To investigate the effects of various toroid parameters on the stagnation
process, and hence, radiation production, a number of calculations have been

carried out. These are presented on the following pages and have been struc-
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tured around the baseline case. The calculations include altering the magnetic
field strength, the initial directed velocity, the toroid mass, the toroid mate-

rial, and the stagnation geometry.
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6.2.1 Magnetic Field Strength Variation

The first set of calculations to be discussed concern varying the initial
magnetic field strength. As mentioned in Chapter 4, the magnetic field struc-
ture is necessary as it provides stability to the compact toroid, allowing it to be
accelerated to high velocities. However, the presence of a magnetic field also
introduces magnetic pressure which can be influential in retarding compres-
sion and draining kinetic energy from the toroid. Simulations of the baseline
calculation indicated that for the conditions and timescales of stagnation, the
magnetic field lines are frozen into the plasma. As the material compresses, so
do the field lines, and the magnetic pressure increases in this region. The
magnetic pressure acts as an additional force against the incoming flow of
material, in effect, producing a “stiffer” toroid. Under these conditions, some
of the initial kinetic energy must go into compressing magnetic field. This
causes the spatial region over which the toroid is decelerated to broaden, and
the material velocity may be decreased before it encounters the shock. As the
magnetic contribution to the total pressure in the stagnation region rises, the
pressure there can exceed the dynamic pressure at lower densities. Thus the
stagnation can be halted at lower densities and is manifest in less toroid
compression.

Clearly, less overall compression will influence the coupling efficiency in
the stagnation region. The radiated yield should decrease, as well as the radi-
ation rate. To determine the extent to which the magnetic field strength influ-
ences the stagnation process, calculations were performed using the
prestagnation conditions of the baseline case, but with increasing initial
values for the toroidal magnetic field. In the baseline calculation, the peak
toroidal field was at 2.0 MG (200 T). For the standard toroid configuration, this
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resulted in a magnetic energy of 112 kJ, approximately 2% of the directed
kinetic energy. With this in mind, peak values of magnetic field were chosen
such that the corresponding magnetic energy was at 10%, 30% and 50% of the
directed kinetic energy. Table 6.6 lists the peak initial value of toroidal
magnetic field, the corresponding magnetic energy, and the ratio of magnetic
energy to kinetic energy for each calculation.

Figure 6.22 shows the effect of the magnetic field strength on the stagna-
tion process by displaying the density and toroidal magnetic field contours at
peak compression for both the baseline case and with the prestagnation
magnetic energy at 50% of the kinetic energy. From these plots, it is evident
that the magnetic field influences the amount of compression that the toroid
undergoes during stagnation. With the larger magnetic field, peak compres-
sion occurs earlier in time, at 4.2 ns, and the peak density is 5.8 kg/m3. This is
approximately a factor of three lower in density than in the baseline case. In a
similar manner, the peak value of the magnetic field at this time, 25 MG (2500
T), indicates only a factor of 2.6 in magnetic compression as compared to a
factor of 7 in the baseline case.

The influence of the magnetic field is further illustrated in Table 6.7 which
provides values of the density, magnetic field, and temperatures at peak
compression for this set of calculations. With increasing field strength, the
toroid does not compress as much and peak compression occurs at earlier
times and lower densities. The temperatures, which are measured in the
region of highest density, are correspondingly lower. The smaller ion tempera-
tures suggest that by peak compression, some of the kinetic energy has been
lost in compressing against the additional force of increased magnetic pres-
sure, making less available to heat the ion fluid.

The effect that the magnetic field strength has on the radiation properties
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Table 6.6. Initial field parameters for magnetic field strength survey

P P T
— ol | 20MG | 120 | 02
ct10 4.3 MG 500 kJ .10
ctll 7.5 MG 1.5M] 30
ctl2 9.7 MG 2.5MJ .50

Table 6.7. Results at peak compression for magnetic field strength survey

simulation t Pmax Bnax Te, TR T;
[ o1 | 62ns | 9kgmd | 140MG | 145eV | 180eV
ct10 5.0 ns 12kg/m® | 21.0MG 145 eV 158 eV
ctll 4.8 ns 73kg/m’ | 240MG 133 eV 133 eV
ctl2 4.2 ns 58kgm? | 250MG 133 eV 133 eV
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T = 6.201E-09 T = 4.201B-09
MAGNETIC PIELD -~ THETA CONPONENT MAGNETIC PFIELD -- THETA COMPONENT

=== ————=

-= 1.5E-04 B= 3.0B+02 D= 6.1E+02 -= 3.3B+00 B= 5.7B+02 D= 1.1E+03
P= 9.1E+402 H= 1.2E+03 += 1.4E+03 Px 1.7E+403 H= 2.3E+03 += 2.6E+03
T = 6.201E-09 T = 4.201E-09
DENSITY DENSITY

-= 1.2E-04 B= 4.3E+00 D= B8.7E+00 -= 1.8B-03 B
P= 1.3B401 B= 1.7B+01 += 1.9E+01 ¥= 3.9B+00 B

(a) (b)

1.3E+00 D= 2,6B+00
5.2B+00 += 5.68B+00

Figure 6.22. Toroidal Magnetic field and density contours at peak compression
for (a) the baseline case where the magnetic energy is 2% of the kinetic energy
and (b) the case where the magnetic energy is 50% of the kinetic energy.
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is shown in Table 6.8. The pulse width was obtained as in the last section,
defined by the full width at half max value of the peak radiated power. The
total radiated yield was measured at the time in which the radiated power
had dropped to 5% of the peak value. In terms of energy conversion, the base-
line case is unquestionably the most efficient with a total radiated yield of
4.768 MdJ. Here the conversion eﬁiciency is 94% as opposed to 64%, when the
magnetic energy is at half of the kinetic energy. The decline in conversion effi-
ciency as a function of increasing field strength, and hence, magnetic energy,
is depicted graphically in Figure 6.23. The radiated power over time is dis-
played in Figure 6.24. As noted in Table 6.8, the radiated power peaks at a
lower value as the initial field strength is made larger. This is observed in the
profile of the radiation rate. The pulse width, which gives an idea of the length
of time over which significant radiation is emitted, is also shorter.

These results imply, as expected, that the conversion efficiency and radi-
ated power depend upon the magnetic field strength, or more specifically, the
amount of magnetic energy present as compared to kinetic energy. In the case
of the compact toroid, a magnetic field is required to contain the plasma and
maintain toroid resiliency. However, too high of a magnetic field can lead to
degradation in radiation production. Based on these simulations of the 5 MJ
baseline case, a magnetic energy that is approximately 10% or less of the ini-
tial directed kinetic energy is necessary to obtain conversion efficiencies above
80%. It should be noted that even with the higher magnetic energies, where
the conversion efficiency has dropped to 60%, the radiated yield is still large
for this problem; in the worst case, 3.2 MJ is emitted. This is certainly a

respectable amount of radiation.
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Radiated Yield vs. Magnetic Energy/Kinetic Energy
5e+06 T T T T T

4.5e+06 -

40406 .

Radiated Yield (J)

i
1

3.5e+06

39"’06 L 1 1 1 ]
0 0.1 0.2 03 0.4 0.5 0.6
Magnetic Energy/Kinetic Energy

Figure 6.23. Radiated Yield as a function of magnetic energy to kinetic energy.

Table 6.8. Results of radiation production from magnetic strength survey

Total yield conversion
simulation | peak power | pulse width (5% of £fici
peak power) efficiency
ctl 837 TW 5.8 ns 4.768 MJ 96%
ctl0 783 TW 5.3ns 4.181 MJ 84%
ctll 665 TW 4.5ns 3.423M1J 68%
ctl2 602 TW 4.1ns 3.221 M) 64%
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6.2.2 Constant Mass, Velocity Variation

One approach to improved radiation production in the sense of higher radi-
ation output, radiation rates, and photon energies, is to increase the initial
kinetic energy per particle. Thus as the toroid stagnates, there is more energy
available to put into the internal energy of the ion fluid. If the conversion
mechanisms are efficient during this process, the larger kinetic energies will
be reflected in the emitted radiation - a larger radiated yield, radiation rate,
and photons at higher energies will be achieved. This effect has been exam-
ined by taking both a smaller and a larger value of the initial velocity (than
that of 100 cm/us), keeping all other parameters defined as in the baseline
calculation. For the same amount of mass, an increase in velocity will then
lead to an increase in the kinetic energy per particle, and an increase in the
total kinetic energy available for eventual radiation. Table 6.9 lists the two
velocities chosen and the associated kinetic energies. As a reminder, the base-
line calculation is also included in this table.

Table 6.10 contains the time of peak compression, the maximum density at
peak compression, the peak radiated power, the pulse width, and the total
radiated output for each simulation. In going from a velocity of 45 cm/us (cor-
responding to a kinetic energy of 1 MJ), to a velocity of 145 cm/us (kinetic
energy of 10 MJ), the total radiated yield has been increased by a factor of 10.
The peak radiated power has jumped by over a factor of 40, while the time
over which the radiated power is above 5% of the peak has been shortened by
approximately 7 ns. In all three of the simulations presented here, the overall
conversion efficiency was above 90%. For these cases, the more kinetic energy
prior to stagnation, the more energy that was produced in the form of radia-

tion.
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Table 6.9. Initial parameters for velocity survey

. . initial kinetic
simulation ' .
velocity energy
_— e
ctl3 45 cm/ps 1.0MJ
ctl 100 cm/ps SO0MJ
ctl4 142 cm/ps 10.0MJ

Table 6.10. Results from velocity survey: peak compression, radiation production

Total Yield
simulation | (Dpeakcomp. | (P)peakcomp. | Peak power | pulse width (5% of
peak power)
ctl3 11.0 ns 12.0 kg/m> 74.6 TW 114 ns 9591 MJ
ctl 6.2 ns 19.0kgm? | 837 TW 5.8 ns 4768 MJ
ctl4 5.2ns 250kg/m® | 3186 TW 3.75ns 9.703 MJ




With increasing velocity, the compression occurs on a faster timescale. The
material stagnates at a faster rate, and is compressed to higher densities and
reaches higher temperatures than its lower velocity counterparts. As a result,
the pressure (material + magnetic) necessary to stop compression and begin
expansion is obtained soon after the initial stagnation. By the time the toroid
does begin to expand outward, a substantial amount of energy has already
been radiated away. (This is the case with all of the simulations examined to
this point.) These factors together contribute to the large radiation rates and
narrower radiation pulses observed at the higher velocities.

As discussed above, an increase in toroid velocity is accompanied by higher
ion and electron températures. As the velocity becomes greater, the amount of
energy that can be imparted to the ion fluid becomes larger, and the ion tem-
perature subsequently rises. This is clear in the early stages of stagnation. At
1 ns into the simulations, the ion temperature for the 142 cm/us calculation is
398 kev, for the baseline calculation, 63 keV, and for the 45 cm/us run, 10 keV.
This behavior is also seen in the electrons, and is attributed to the ion-electron
coupling. By peak compression, the ions have cooled significantly and the elec-
tron fluid and radiation field are in thermal equilibrium. Even at this time,
the signature of higher velocities is still evident in the electron temperatures:
237 eV for ct14, 145 eV for ct1(baseline calculation), and 89 eV for ct13.

The radiated power with time for both velocity calculations is shown in
Figure 6.25. The difference in the two radiation rates is quite obvious. The
rapid climb in power observed at the front of the 10 MJ pulse is the result of a
sudden increase in the electron-radiation coupling within the stagnation
region. During the initial compression, the ion and electron temperatures are
very large and both the ion-electron and electron-radiation coupling is low.

Even by 1.6 ns, the ions are at 100 keV and the electrons at 1.8 keV (Tg=195
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Radiated Power vs. Time: initial velocity of 45 cm/us
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Figure 6.25. Radiated Power vs. Time for the (a) 45 cm/us velocity run, 1 MJ
directed kinetic energy and (b) 142 cm/ps run, 10 MJ directed kinetic energy.
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eV). At this electron temperature and a density of 4.5 kg/m3, the mean free
path for electron-radiation coupling is 13 m. As the density in this region
increases, the interaction between the electrons and radiation field continu-
ally improves and the large reservoir of energy that is available in the electron
fluid can be more easily radiated away and shared with the radiation field. At
1.8 ns, just before the abrupt change in the radiation rate occurs, the Plank
mean free path has decreased to 1 m. By 2 ns, on the downside of the peak, it
has dropped dramatically to 0.79 mm. During this time interval, the electrons
are strongly coupled with the radiation field and a rapid rise in radiated power
is observed. This is further evidenced in the electron temperature at 2 ns
which has dropped to 234 eV. The ion temperature at this time has decreased
to 2.8 keV.
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6.2.3 Constant Velocity, Mass Variation

As shown, increasing the toroid velocity increases the kinetic energy per
particle, which in turn increases the total amount of kinetic energy accessible
for conversion into thermal energy and then radiation. A larger kinetic energy
can also be obtained by adding more mass to the toroid. In this case, the
directed kinetic energy per particle remains the same, but the number of
particles has changed. The ions will be heated to the same temperature, but
there will be more of them. If the transfer of energy between the material
components and the radiation field is significant on the timescale of stagna-
tion, the resulting radiated energy will be correspondingly greater as will the
radiation rates. For the same toroid dimensions, a larger mass will produce
higher densities. It should be noted that this can have a bearing on the
coupling properties in the stagnation region and could alter the radiated yield,
the shape of the radiated power curve and the photon distribution.

Table 6.11 list a set of calculations in which the initial mass of the toroid
has been varied. Also contained in the table are the peak densities and ener-
gies affiliated with the given mass. As usual, the baseline case values have
been included for reference. Table 6.12 shows the time and density at peak
compression and the various radiation quantities. As more mass is put into
the system, the density becomes higher and the coupling is enhanced. The tor-
oid can cool more efficiently, and the pressure takes longer to build allowing
for greater compression. Because of this, peak compression occurs later in
time. For the 2 mg toroid, the peak density is a factor of 6.2 greater than the
initial peak value. For the 40 mg case, this has increased to 14.

As with increasing velocity, the higher kinetic energy obtained through
additional mass results in a higher peak power and total radiated yield. In
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Table 6.11. Initial parameters of mass survey

simulation | initial mass ingieilsﬁ?ak le(itig;
T o5 20mg | 0.37kg/m3 1.0 MJ
ctl 10.0 mg 1.8 kg/m3 50MJ
ct16 200mg | 3.7kgm’ 10.0 MJ
ctl7 400mg | 7.4kg/m3 20.0 MJ

Table 6.12. Results from mass survey: peak compression, radiation production

Total Yield
simulation (t)peak comp. (P)peak comp. | Peak power | pulse width (5% of
peak power)
e
ctls 5.0ns 2.3 kg/m3 157 TW 5.0ns 0.840 MJ
ctl 6.2 ns 19.0kg/m® | 837TW 5.8 ns 4768 MJ
ctl6 7.0 ns 46.0 kg/m3 1713 TW 5.8ns 9.668 MJ
ctl7 7.5ns 1000 kg/m3 | 3521 TW 5.8ns 19.57 MJ
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going from 2 mg to 40 mg, the total radiated yield went from 0.84 MJ to 19.57
MJ. This corresponds to over a factor of 20 difference in total radiated energy.
The conversion efficiency in these two instances is 84% and 97%, respectively.
This observed improvement in efficiency is a consequence of better coupling at
the larger densities. Figure 6.26 displays the radiated power as a function of
time for the runs ct15, ct16, and ct17. The 2 mg, 1MJ calculation was plotted
separately from the other two simply because of the scaling.

An inspection of the radiated power curve for the 2 mg calculation reveals
that it is very similar to that of the baseline case. Initially, the Plank mean
free path is on the order of 1 m in the stagnation region. At 1.8 ns, the elec-
tron-radiation coupling improves substantially and this value drops to approx-
imately 1 cm. The electron temperature changes from 310 eV to 130 eV within
0.2 ns bringing it much closer to the radiation temperature of 98 eV. As a
result, a change in slope is seen in the radiation rate. This change occurs later
than in the baseline case because there is less material (lower densities) to
start off with originally and it takes longer to reach the required densities
(and temperatures). By peak compression, the Plank mean free path has
decreased to around 2 mm in the stagnation region. At this time, the ion
temperature is at 100 eV, the electron temperature at 98 eV and the radiation
field, 95 eV.

The abrupt change in the slope of the radiated power observed in the 2 mg
and baseline calculations is also present at 20 mg. A comparison of these simu-
lations indicate further that this change occurs earlier in time with increasing
toroid mass. By the 40 mg calculation, this discontinuity appears to have
completely vanished. With the ct15 run of 20 mg, the transition in slope occurs
at 1.4 ns, and, similar to the lower mass calculations, the Plank photon mean

free path in the stagnation region is approximately 1 cm. This value of 1 cm
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Radiated Power vs. Time:-initial mass of 20 mg and 40 mg
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Figure 6.26. Radiated Power vs. Time for the (a) 20 mg and 40 mg runs at 10 MJ and
20 M1J directed kinetic energy, respectively, and (b) 2 mg run at 1 MJ directed kinetic

energy.
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seems to be a defining number as far as the electron-radiation coupling is
concerned, implying that there is a density threshold at which the coupling
(albeit an artifact of the equation of state tables) really “turns on”. In the 40
mg simulation, the photon mean free path is already 1 cm at 1 ns into the stag-
nation. Thus, there is no regime in coupling efficiency to cross over in this case.

At 40 mg, the density is high enough that by 2 ns the mean free path for
the electron-radiation coupling is on the order of the stagnation region: the
Plank mean free path at the wall is 0.6 mm compared to the 0.5 mm size of the
compression zone. As the toroid continues to compress, the Plank mean free
path continues to decrease and by peak compression is at 0.03 mm. Under
these conditions, the stagnation region, which produces the large fraction of
emitted radiation, closely resembles a surface emitter. This is most certainly
the case by peak compression. At this time the ion temperature is 230 eV and
the electrons and radiation field are at 219 eV.

The absorption mean free path, which determines the transport of the
radiation field, ranges from 3 mm to 6 mm in the prestagnated material for
the first 4 ns of stagnation. Since this value remains smaller than the uncom-
pressed toroid dimensions, the radiation in this region is transported by diffu-
sion using the rosseland mean opacity term in the radiative conductivity.
During the early part of stagnation, the absorption mean free path at the wall
is typically larger than the stagnation region, but smaller than the size of the
entire toroid. This value continues to decline and has dropped to 0.1 mm by
peak compression. An examination of the output indicates that actually by 3
ns, the stagnation region is in the diffusion regime with the mean free path at
0.3 mm. For the 20 mg calculation the diffusion regime is reached at approxi-
mately 6.5 ns into the stagnation. (In the prestagnated material the mean free
path is 10 mm.) As for the 2 mg problem, the radiation is always flux-limited

198




as the absorption mean free path is larger than the characteristic dimensions
of the toroid throughout the entire stagnation.

A comparison of the 1 MdJ and 10 MJ simulations to their velocity counter-
parts (ct13 and ctl4 calculations, respectively) reveal that the calculations
having the same initial total kinetic energy produce similar radiated yields.
The 2 mg, 100 cm/us calculation has a somewhat lower yield than that of the
10 mg, 45 cm/us run. This is caused by the lower coupling efficiency resulting
from the smaller densities and higher temperatures in the 2 mg problem.
Although the radiated yields are close in both cases for the two separate ener-
gies, the radiated power and pulse widths are quite different. Take for
instance the two 10 MJ calculations. As the velocity is increased to 142 cm/us
and the mass is kept at 10 mg, the pulse width naturally becomes shorter.
Because of the increasing velocity, the photon energy distribution is shifted to
higher energies (the ion temperature is higher, resulting in higher electron
and radiation temperatures). The amount of higher energy photons leaving
the system in this case, surpasses that of the 20 mg case where there may be
more photons emitted, but at lower energies. The radiated power is subse-
quently larger for the 142 cm/us simulation. The peak value of radiated power
is further enhanced in this run by the transition in material-radiation

coupling at around 1.8 ns.
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6.2.4 Mass Variation, Velocity Variation

In the two previous sets of calculations, either the mass or the velocity of
the toroid was varied, thereby changing the amount of initial directed kinetic
energy. In the next two calculations, both of these parameters have been var-
ied simultaneously, and in such a manner that the kinetic energy is kept at a
constant value of 5 MJ. Table 6.13 list the initial mass and velocity in these
calculations. In the first run, the mass is lower than in the baseline case and
the velocity has correspondingly increased. In the second run, the opposite is
true. The results of the two simulations along with that of the baseline calcu-
lation are shown in Table 6.14. The radiated power curve for each run is dis-
played in Figure 6.27.

The information provided in Table 6.14 indicates that decreasing the mass
to 5 mg and increasing the velocity to 142 cm/us leads to a narrower pulse
width and a larger radiation rate. These characteristics are consistent with
those observed in the velocity survey. At a higher velocity, the compression
occurs at a faster rate and the time over which substantial radiation is emit-
ted is reduced. In addition, at higher velocities there is more energy available
per particle. The ion temperature is larger, which raises the electron tempera-
ture, and consequently the radiation rate can increase. In accordance with the
higher ion temperature, the photon energy distribution will also be shifted to
larger energies. At 1 ns into the stagnation, the ion temperature has reached
398 keV, the same as in the 10 mg, 142 cm/us calculation. This further illus-
trates that it is the kinetic energy per particle which governs the maximum
energy that can be put into ion thermal motion.

The physics in the stagnation region, is of course, also dependent on the

density. This, along with the temperature, is what defines the ability of the

200




Table 6.13. Initial parameters for 5 MJ survey: varying initial mass and velocity

. . s initial peak initial
simulation | initial mass . .
density velocity
ct18 50mg | 0.92kg/m> | 142 cmips
ctl 100mg | 1.85kg/m3 | 100 cm/us
ct19 40.0mg | 74kgm3 | 50cm/us

Table 6.14. Results from 5 MJ survey: peak compression, radiation production

Total Yield
simulation | (Dpeakcomp. | (P)peakcomp. | Pe2k power | pulse width (5% of
peak power)
_————— e e a— e e e
ctl8 4.4 ns 9.7 kg/m3 1729 TW 3.5ns 4716 MJ
ctl 6.2 ns 19.0 kg/m3 837 TW 5.8ns 4.768 MJ
ctl9 12.0 ns 71.0 kg/m3 424 TW 11.0 ns 4924 MJ
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ions and electrons and subsequently the electrons and radiation field to couple
with each other. The coupling can in turn effect the degree of compression and
the conversion of initial kinetic energy into thermal energy and then radia-
tion. For this run, the density is lower than in the baseline case but the tem-
peratures are higher. As a result, the coupling efficiency is expected to
decrease and the conversion efficiency to be lower. An examination of the table
shows, however, that the conversion efficiency has not been substantially
effected. The lower mass, higher velocity simulation is almost as efficient a
radiator as the baseline case.

An explanation for this unexpected improvement in conversion efficiency
can be found by looking at the radiated power curve. From Figure 6.27, the
radiation rate exhibits a sharp rise at the front end of the pulse which is not
observed in the smooth curves of the other two calculations. This feature is
similar to that observed in the ct14 run at 10 mg, 142 cm/us and is caused by
an equation of state related transition in the electron-radiation coupling. In
this case the Plank mean free path drops from a value of 10 m just prior to the
observed spike to 1 mm on its downside. The amount of radiated energy pro-
duced as a result of this coupling effect can be estimated from the radiated
power curve and is found to be approximately 400 kdJ. Thus, without this con-
tribution to the coupling, the total radiated yield would decrease to 4.316 MJ.

The influence of the density and temperature on the conversion efficiency
is apparent in going from the baseline calculation to the 40 mg, 50 cm/us cal-
culation. The conversion efficiency in this latter case is 97% as opposed to the
baseline and ct18 runs of 94%. Again, the results in this case are consistent
with the velocity and mass surveys. Because of the low velocity, the stagnation
process occurs slowly and the associated pulse width is quite broad. With

decreasing velocity there is also less kinetic energy per particle and the ion
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temperature does not get as high (The ion temperature at 1 nsis 8.9 keV). The
radiated power is therefore not as large as in the baseline calculation and the
radiation spectrum should consists of more lower energy photons. With the
larger mass, the density in the stagnation region has increased. This factor,
together with the smaller temperatures, will improve the coupling and an
increase in conversion efficiency will be observed.

In all of the calculations considered thus far, the coupling was sufficient at
least during some part of the stagnation to extract most of the energy origi-
nally stored in the directed kinetic energy of the toroid. Based on previous
discussions, one could envision initial conditions where the coupling becomes
essentially non-existent within the stagnation region and the radiation
production would severely deteriorate. Obvious candidates for influencing
coupling are the initial mass and velocity. With increasing velocity or decreas-
ing mass (or both), the degree of coupling will gradually decline and the
radiative yield will become correspondingly limited. For the 5 MJ toroid,
where both mass and velocity are varied, the lower mass, higher velocity

calculations will eventually exhibit lower radiation production.

204




6.2.5 Stagnation Geometry and Toroid Material Variation

The last two simulations presented here investigate separately the influ-
ence of stagnation geometry and toroid material on radiation production. In
the first calculation, a more compact geometry was considered in which the
inner conducting wall has been removed and the outer conducting wall
brought in closer to the centerline at 0.89 cm. This geometry is representative
of that found in the calculations of M. Gee et. al. [12,13] and uses the highest
degree of focusing (focusing down to the axis). The initial values of mass and
velocity were the same as in the baseline case and the directed kinetic energy
of the toroid was 5 MJ. The peak value of the toroidal component of the
magnetic field was set to 11 MG (1100 T). This value is less than that deter-
mined from isentropic conditions for a compression down to 0.89 cm outer
radius (25 M@, 2500 T) and is based on the fact that there may be some losses
in magnetic energy due to diffusion and nonadiabatic compression. The corre-
sponding magnetic energy for this configuration is 500 kdJ, 10% of the initial
kinetic energy. With these values, the kinetic and magnetic energies in this
problem are about the same as in the ct10 simulation discussed earlier.

At a smaller radius and hence smaller volume, the density in this calcula-
tion is larger than in the baseline case. As a consequence, the coupling is
expected to be more efficient throughout the stagnation. However, for this
problem, the magnetic energy is also larger and the deleterious effects of mag-
netic pressure will compete with the improved coupling. If the coupling is not
sufficiently improved, then the additional energy gained through coupling is
not enough to offset or overcome that lost to magnetic pressure. Under these
circumstances, the results of this calculation may be no better than that of

ct10 (magnetic energy 10% of kinetic energy) and the baseline case may be
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more adequate in supplying the desired radiation production.

The maximum compression in this simulation occurs at 5.0 ns with a peak
density of 74 kg/m3. Compared to the initial density of 11 kg/m3, this is a
factor of 6.7 in compression and is slightly larger than that of 6.5 observed in
the ct10 calculation. The total radiated yield is 4.12 MJ, producing a conver-
sion efficiency of 83%, while the radiated power has a peak value of 787 W and
a pulse width of 5.1 ns. These values are very close to those of the ct10 calcula-
tion and are consequently lower than the baseline case. This indicates that for
the parameters chosen, focusing to a smaller volume in an attempt to gain
higher conversion efficiencies and radiation rates does not work. In this case,
it is better to go with less compression, smaller fields for the same amount of
mass. This is actually desirable since the latter puts less demands on the
experimental system. The radiated power as a function of time is displayed in
Figure 6.28 (a). Note that the transition in coupling efficiency which appears
in the curve for the ct10 and baseline calculation (Figure 6.24) has almost
disappeared.

For the final calculation of this section, a lower Z (atomic number) mate-
rial, in this case Argon, was chosen instead of Xenon to examine the effects
that complete ionization has on the radiation production during stagnation. In
the baseline calculation, the Xenon in the stagnation region is never fully
ionized reaching its highest ionization fraction, Z, of 43 in the first ns of stag-
nation. (Z = 54 for Xenon). As the density increases, this fraction decreases,
and by peak compression Z = 25, the value it had initially in the prestag-
nated material. Thus, throughout the stagnation, there are always Xe ions
with bound electrons. Contributions to the emitted radiation will then result
not only from free-free interactions but also from bound-bound and bound-free

electron transitions. (In a fluid code, where the radiation field couples strictly
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through the electron temperature, the effect of bound electrons is folded into
the opacities.) In addition, the interaction of the radiation field in terms of the
scattering and absorption of photons also depends upon both the free and
bound electron distributions. In particular, heavier elements with many inner
shell electrons can provide substantial opacity to energies below about 10 keV
[4]. |
To investigate the effect that these properties have on radiation produc-
tion, the Xenon plasma was replaced with Argon. For the same initial condi-
tions, the Argon becomes fully stripped almost immediately in the stagnation
region and remains so throughout the compression. Figure 6.28 (b) shows the
radiation rate for the Argon calculation. The radiated power peaks at 219 TW
substantially lower than the 837 TW of the baseline calculation. Because the
radiated power curve gradually drops off, it is difficult to approximate a pulse
width. As a first estimate, this is measured from the point where the radiation
rate actually starts to rise, at about 2 ns, out to 10 ns. Here the 10 ns is taken
from the baseline calculation, and is the time at which the radiated power has
dropped to 5% of the peak value there. With this, the pulse width is 8 ns. The
radiated yield at 10 ns is 1.31 MJ. This is quite low compared to that of the
baseline case and relates to a conversion efficiency of 26%. By this time, the
radiation being emitted is occurring during expansion. As a result, the mate-
rial is cooling very rapidly and the radiation conversion is even less efficient.
Even by the end of the simulation, 25 ns, this has only increased to 2.117 MJ.
These results imply that the material comprising the toroid can strongly
influence its ability to be a good radiator. In moving from Xenon to Argon, the
plasma went from partially ionized to fully ionized, a process characterized as
“burn through “. In this case, the ion-electron and the electron-radiation cou-

pling decreased considerably (i.e., 'ci‘; o Z~2) [6] and not much energy could be
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transferred to the radiation field. This is evident in the temperatures at peak

compression: 10 keV for the ions, 5 kev for the electrons, and 87 eV for the
radiation field. Clearly, this is very different than the close temperatures
observed at peak compression in the baseline case. The very low radiation
temperature is directly related to the poor coupling characterized by a large
Plank mean free path observed in the Argon calculation and is indicative of a
volumetric emitter - this never drops below a km! Furthermore, because the
Argon has burned through, any radiation that can be emitted is bremsstrahl-
ung and tends to consist of low energy photons [6]. It is the poor coupling and
low energy photons combined that lead to the decrease in radiation production
making Argon a poor choice for the stagnation plasma. In the same token, it is
the efficient coupling and high energy line emission that is a consequence of

partial ionization and large Z that makes Xenon a better choice.
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CHAPTER 7. SUMMARY AND CONCLUSIONS

In this dissertation a flux-limited nonequilibrium radiation diffusion model
was incorporated into the MHD code MACH?2, and extensively benchmarked.
This three temperature radiation MHD code was then used to simulate the
complex physics of stagnating compact toroids including radiation production.
A summary of the work performed and the conclusions reached concerning the
stagnation process is presented below.

MACH?2 is a 2 1/2-dimensional, nonideal magnetohydrodynamics code
which has been utilized to model a variety of laboratory experiments. The
equations that are solved by the code include the dynamic equations for the
material density, electron and ion specific internal energies, momentum, and
magnetic field. An equation of state is used to supplement these evolution
equations and may be evaluated analytically or extracted from pre-generated
tables which are based on LTE (local thermodynamic equilibrium) material
conditions. With the addition of the nonequilibrium radiation diffusion model
to the code, the radiation field is treated as a separate entity described by a
Plankian distribution at the radiation temperature Tg. This implementation
introduced a dynamic equation for the radiation field and modified the
momentum and energy equations - a radiation pressure term in the momen-
tum equation and a electron-radiation coupling term in the electron energy
equation.

The nonequilibrium radiation diffusion model is most accurate in the diffu-
sion regime where the absorption mean free path is much smaller than a
characteristic dimension of interest. To extend this mode! to an optically thin
regime, where the diffusion approximation is no longer valid, a flux-limited

version of the radiative conductivity was formulated. This modified conductiv-
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ity provided the proper values of the radiation flux in both the thick and thin
limits (cE) and enabled a qualitative smooth transition between these limits.

The coding of this radiation model into MACHZ2 was followed by rigorous
testing of the various algorithms. Detailed benchmarking of the electron-radi-
ation coupling and the radiation diffusion was performed using a set of
radiation MHD test problems. This benchmarking had the purpose of not only
verifying that the associated algorithms were correct, but ensuring the imple-
mented algorithms were stable and robust. This latter issue became important
in the electron-radiation coupling, and resulted in changing the initial explicit
difference form of the coupling equation to an implicit form. The radiation
diffusion test problems were extensive and covered a range of physical
regimes. The first calculations involved one and two dimensional diffusion of
radiation in a static, opaque material with a constant diffusion coefficient.
Additional calculations allowed for more complexity by including electron-
radiation coupling and pressure gradient effects which generated fluid motion
(dynamic diffusion). These latter problems examined both optically thick and
thin regimes. The advection of the radiation field, radiation pressure-volume
work, and the effect of radiation acceleration on the material were also bench-
marked on a qualitative level.

With the flux-limited nonequilibrium radiation diffusion model in the code,
MACH2 was used to simulate the stagnation of compact toroids against sta-
tionary targets and the subsequent evolution of the radiation field. Compact
toroids, which are magnetically confined plasma rings, can be accelerated to
large velocities, and thus large directed kinetic energies. At high enough den-
sities and velocities, they have the capacity to become effective radiation
sources upon stagnation, producing photons above 1 keV. The compact toroids

considered in this work are approximately 1 cm in diameter and have kinetic




energies in the MJ range with masses between 5 mg and 40 mg, and velocities
between 50 cm/us and 142 cm/ps.

A baseline case of 10 mg at 100 cm/us, corresponding to a directed kinetic
energy of 5 MJ, was analyzed in detail. For the defined prestagnation condi-
tions, this toroid was found to be an efficient radiator upon stagnation,
producing 4.768 MJ of radiated yield with a peak radiated power of 837 TW
and a pulse width at half max of 5.8 ns. The stagnation region was also found
to evolve through different radiation regimes related to electron-radiation cou-
pling and radiation transport. Poor coupling in the early stages of stagnation
led to three separate temperatures in the compression region. The low densi-
ties and high temperatures during this time also resulted in a large
absorption mean free path and the radiation was free streaming. In the latter
stages of compression and into expansion, the material was observed to tran-
sition to higher densities and lower temperatures. Consequently, the electrons
and radiation field had reached thermal equilibrium by peak compression at
5.2 ns. The absorption mean free path, which was on the order of the toroid
dimensions at peak compression, continued to decrease into expansion and
the radiation field was transported in a diffusion-like manner. In terms of the
electron-radiation coupling, the stagnating toroid is observed to move from a
volumetric emitter towards a surface emitter during the stagnation process.

A parameter study was also performed using the baseline case as a starting
point. This study examined varying the prestagnation magnetic energy to
kinetic energy ratio, the initial mass, the initial velocity, both mass and veloc-
ity together keeping the kinetic energy the same, the stagnation geometry, and
finally, the toroid material. There are a number of conclusions which can be
reached based on the results of this parameter survey. The magnetic energy to

kinetic energy ratio, if too large, can cause a reduction in total radiated yield
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and radiated power; the magnetic field introduces magnetic pressure effects
which can deter toroid compression. For the 5 MJ calculations which were
examined here, the radiated yield was still significant even when the magnetic
field effects were influential in the stagnation. In the most extreme case,
where the prestagnated magnetic energy was 50% of the kinetic energy, the
radiated yield was 3.2 MJ. Although this was only a conversion efficiency of
64%, the radiated energy was still high.

With a change in initial directed velocity, the total kinetic energy of the
toroid is varied as is the kinetic energy per particle. In this instance, larger
velocities provided more available energy for conversion and the radiated
yield increased. In addition, the photon distribution was shifted to higher
energies and a rise in radiated power was observed. Higher velocities also led
to shorter pulse widths. On the other hand, by varying the mass, the amount
of particles is changed but the kinetic energy per particle remains constant.
Under these conditions more mass led to larger total kinetic energies and
higher initial densities which resulted in improved coupling. Consequently,
the radiated energy increased (as a result of larger kinetic energy and higher
conversion efficiencies), as did the radiated power.

In the calculations where both the mass and velocity were varied while the
directed kinetic energy was maintained at 5 MJ, the results were consistent
with those of previous simulations. A mass of 5 mg, velocity of 142 cm/us
produced a short pulse of 3.5 ns with large radiation rates - peak power of
1729 TW. At the other extreme, a mass of 40 mg, velocity of 50 cm/pus produced
a wide pulse of 11 ns with a smaller peak radiated power of 424 TW. In both
cases, the total kinetic energy was the same, but the kinetic energy per parti-
cle different. The conversion efficiency was slightly better with the higher

mass because of improved coupling. This latter study indicated that for a spec-
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ified amount of kinetic energy, one can construct the desired photon distribu-
tion, radiated power, and pulse width by varying either or both of these
parameters. Of course, varying these parameters also influences the coupling
efficiency in the stagnation region and thus the amount of radiation energy
that can be extracted. This must be kept in mind.

In an attempt to obtain higher cqnversion efficiencies and radiation rates, a
more compact geometry with 5 MJ directed kinetic energy at 10 mg, 100 cm/us
was simulated. In this case, the toroid was focused down to 1 cm in diameter at
the axis, physically causing the density to increase as well as the magnetic
field. The results of the simulation indicated that this does not improve the
radiation production because the effect of the higher magnetic strength pre-
vails over the increase in coupling caused by higher densities. This is impor-
tant in that it provides evidence that higher compression with the same mass
and velocity does not always lead to improved radiation production. This
permits less stringent requirements on the experimental system.

To examine the effect that partial ionization of material in the stagnation
region has on the radiation production, a calculation was carried out which
used Argon gas instead of Xenon as the material comprising the compact
toroid. At the same initial densities, temperatures, and fields as in the base-
line case, the Argon toroid was found to be fully stripped during most of the
stagnation. This resulted in a poor radiator indicating that bound electrons
can drastically influence the coupling properties and photon energies in the
stagnation region.

There is always more work that can be done to develop a more accurate
picture of compact toroid stagnation, either by improving the modelling of the
stagnation process, and in particular, the radiation treatment, or by further

calculations which span a broader parameter space than was addressed here.
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The calculations presented in this dissertation were based on LTE atomic
physics and mean opacities were used to describe the electron-radiation
coupling and the diffusion of the radiation field. In the initial stages of stagna-
tion, the low density material in the vicinity of the wall reaches large temper-
atures on a timescale of approximately 1 ns. As a result, the compressed
portion of the toroid is most likely non LTE during the first ns or so of the
simulation and the LTE atomic physics model is not appropriate to use at this
phase of the stagnation. Furthermore, a lower mass or less compressed toroid
might not have the prestagnation densities to ever reach an LTE state at any
time during the calculation. In this case a non LTE description of the atomic
physics is required throughout the entire stagnation to accurately simulate
radiation production. An investigation into the non LTE issues of the stagna-
tion process could clarify the importance that such physics plays, whether it
occurs in only the first few ns of a calculation, or throughout the simulation. A
decision can then be made concerning the necessity of using non LTE physics
either in MACH2 or at some point outside the calculation via post processing.
As mentioned, the radiation diffusion is based upon a single mean opacity
into which is folded the information contained in line absorption, etc. This is
another area which could be improved upon by incorporating multigroup
diffusion into the radiation diffusion algorithm. With a multigroup treatment,
the radiation spectrum is divided into a number of frequency groups and the
group opacities (specifically Rosseland) are obtained by averaging the associ-
ated spectrum over its corresponding frequency group. Thus, any spectral
information that might have been previously washed out through the averag-
ing, will become more visible. This method becomes increasingly better as the
number of groups becomes larger - the details of the weighting procedure are

less important. The implementation of such a treatment, however, requires a
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separate diffusion equation for each group and for the entire set of equations
to then be solved simultaneously. Clearly, such an effort would require a
substantial amount of work and would be a reasonable project for a post
doctoral position.

The calculations discussed in this dissertation were based on a compact
toroid which had undergone a factor of twenty in radial compression. These
calculations were limited in the range of parameter space that was simulated,
investigating the stagnation physics for a relatively small set of prestagnation
properties and geometry. It should be noted that a factor of twenty compres-
sion has not yet been attempted in the current experiment at the Phillips
Laboratory. In all likelihood, this degree of radial compression will be reached
in the near future. At that time, it would be appropriate to benchmark the
nonequilibrium radiation diffusion model of MACH2 by simulating the entire
compact toroid experiment, from formation through compression to stagna-
tion, based on the experimental geometry.

The parameter survey examined here should be extended to include other
possible scenarious which might lead to a realistic optimization of the desired
radiation production together with relaxed system requirements. For exam-
ple, simulations which consider larger masses and larger toroid sizes prior to
stagnation, while maintaining the density range of previous calculations, have
been suggested [63]. In these instances, the larger size of the toroid would
provide a greater extent over which the radiation field can interact with the
material. This would keep the photon mean free path in the surface-like emit-
ter regime longer, as well as the diffusion regime, resulting in higher conver-
sion efficiencies. This is of interest experimentally, since it might allow less
compression for the required radiation production thus bypassing many of the

problems that can arise with extreme compression.
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APPENDIX A. ANALYTIC COMPRESSION RATIOS OF
PHYSICAL PARAMETERS FOR ISENTROPIC COMPRESSION

A first order approximation to the scaling of physical parameters during
compact toroid compression can be derived analytically. Such analytic expres-
sions are informative in that they indicate the effect of compression on the
magnitude of physical quantities and provide an intuitive picture of the com-
pression process without requiring the use of sophisticated numerical codes or
after-the-fact experimental measurements. Under the assumption of self-sim-
ilar, quasistatic compression, the compression process can be considered
adiabatic and reversible, i.e. isentropic. In this case, physical quantities such
as temperature, density, and magnetic field are related in a simple manner to
their precompressed counterparts.

Recall the first law of thermodynamics:

du =dgq-pdv = dq =du+pdv . (A1)

where du is the change in the internal energy of an isolated system, pdv is
the work done by the system, and dgq is the quantity of heat loss from the
system. (All quantities are written per unit mass.) Writing dq as Tds and

specializing to an ideal gas (pv = ®T, du = ¢, dT, the above equation

becomes

Tds =c,dT+2T% (A2)
or

ds = ¢, 2 +2% | (A3)

For an adiabatic process dq = 0 = ds and, upon integration

_ T v
0-—cvln(T;)+ﬂ(ln(;;) . (A4)
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Rearranging,
a— _— s -1)— ’
ln(T ) = p ln(v ) . (A5)

0 v o

Using, ® = ¢p=C,y for an ideal gas and the definition y= cp/ c,»

Ty _(y- v
ln(T;)— (v l)ln(vo) , (A6)
or
v (7_1)
T=To(-v—°) (A7)

If the compact toroid is assumed to have a spherical shape, with radial dimen-

sion given by R then
_ (4 _p3 _ 4 3 v R.3 _ EQ
v = (§1tR )Y/m , m = p(gnR ) = constant = 0, = (R_o) =5
and
3~ (y-1)
_ p -1 : I:Ro :l A8
T = To(b—o) = T,| () . (A8)

For a monatomic gas (three degrees of freedom), v = 5/3, and the temperature

after compression is related to the precompression temperature by

R 2
T=To(fo) . (A9)

A similar pressure relationship can be found from (A9) using the equation of

state for an ideal gas:

T=%‘3=§I—2, (A10)
2
P P R

[~}




or

R 2 R 3R 2 R 5
=p 2 (2% =p (20 (X2 =p (=° (A11)
p pOpo(R) po(R) (R) p, ()
To determine the compression ratios for magnetic field, the assumption of a
highly conducting material (conductivity is infinitely large) is made. For such
material conditions, the magnetic flux is conserved through any surface of a

system and [45]
@, = [B-dA . (A12)
w=[B,

Using the surface area of a sphere and equating the precompressed flux to the

flux at any stage of the compression:
2 2
B R = BR

or

2

R
B = BO(F") : (A13)
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APPENDIX B: ANALYTIC SOLUTIONS OF THE DIFFUSION EQUATION

Benchmarking recently developed code against known analytic or standard
numerical solutions is a common and necessary practice in computational
physics. Benchmarking aids in the debugging process of algorithms and pro-
vides a measure of the ability of a code to simulate actual physical conditions.
It can be useful in determining the regimes, if any, in which numerical solu-
tions diverge from true physical solutions and can assist in identifying the
cause of solution error, i.e., whether this divergence results from the finite dif-
ference approximation to the differential equations, or in some cases, to the
manner in which a set of difference equations are solved.

In this appendix, analytic expressions for the diffusion of a physical quan-
tity in one and two dimensions are derived for specific cases in planar
geometry. These solutions are then used to benchmark the radiation diffusion
algorithm in MACH2. In particular, solutions that are of interest include the
one dimensional linear flow of radiant energy from a boundary into a cold
material (Tr=0), and the two dimensional cooling of a radiatively “hot” rectan-
gular region by diffusion through its bounding surfaces.

Consider the one dimensional diffusion problem given by:

v =0y at x =0

2
av= ?_v 0<x<l v=vy at x =1 (B1)

— =X
ot 2’
ox v=f(x) aat=0

where v is the variable of interest and x is a constant characteristic of the sys-
tem in which the quantity v is described. The solution to this problem can be
broken into two contributions. One contribution is the solution to the diffusion
equation with v at the ends x = 0, set to zero, while the other contribution is

the steady state solution for v = constant #0 at x = 0, /. In other words, the
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solution to the problem posed by (B1) is'a superposition of two solutions. The
first solution corresponds to the spatial and temporal evolution of v for a sys-
tem which tends to a final steady state of v = 0 (which occurs when the value
of v is zero at x = 0,1). The second solution corresponds to a time indepen-
dent correction term which arises because the end conditions at x = 0,/ are
some value other than zero, leading to a final steady state value different from
zero. Mathematically, this transforms the problem defined by (B1) into an
equivalent problem given by the following two equations and their boundary

conditions:
2

9.”.:1(91, u=0atx=01 t20, (B2)

ot ox2
and

2u u.=v, atx =0,

2c =0, ¢ 1 (B3)
ox u,=vy at x =1,

where the solutions u and u, must satisfy
v=u+tu,, v=f(x) att=0. (B4)
The general solution to the diffusion equation

2
é_l.l. = Ké__u_ ’ (B5)
ot ox2

can be determined using the method of separation of variables [59] with
ux,t) =F@x)T () . (B6)

Substituting this expression into Equation (B5)

19°F _1109T (B7)
Fy2 xT ot
or
2
10°F 2 1197 _ , (B8)
F 3,2 xT ot ’
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where o is the separation constant. With the solutions to these two equations

given by
3—1§+a2F =0 = F@x) = (z’:;slg) , (B9)
and
%—? =-0%kT = T() = Kt , (B10)
the basic solution takes the form
u = [Asinox + Bcosox] e_azxt . (B11)

Applying the boundary conditions defined for Equation (B2),
Asin0+Bcos0=0 = B=0

n (B12)
Asinoal=0 = ol=nn = a=§l— ,
the solution becomes the series
n2n?
oo n —K—l—é——t
u= ; Ansm(——l—x)e . (B13)

n=1
To find the coefficients A,, the initial condition v = f(x) at t = 0 is used
along with the definition v = u +u_ to obtain

v-u, =f(x)~u,= Y Ansin(?;x) . (B14)
n=1

Multiplying both sides of the above equation by sin (nnx/l) and averaging

over 2/:
2 ! nr .
A, = ﬂ[f (x") —u,(x)] Sin(—l—-x')dx' . (B15)
0

Using the solution given by Equations (B13) and (B15), and the steady state
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solution to Equation (B3):

2 Vg l _
al;-o = %E——C: J'du —C_[dx = C = vzlvl
ox
’1 (B16)
du, vy-v, B ' v2—v1 Uy—Uy
I - ] :jduc jdx or u, =v,+ %
Uy

an expression for v, the solution to the original problem, can be written as

Vo—0
v=utu, = v+ 2l Ly
] _Kn21t2t
2 ] 1 : nn ' ' 3 nrn —5—
+ ) (Tj[f(x)—uc(x)]sm(Tx)dx)sm(Tx)e !
n=1" 0
Vo—0
- 2l Uo—V1 | . nm , '
+ ) (7I[f(x)‘(”1 7 x)]sm(Tx)dx)
n=1" ¢
n2n?
i -K——z——t
xsin(-—-l-—x)e ! .
(B17)

This expression can be simplified by carrying out the integration of the terms
contained in the summation wherever possible. Integrating the second term in

the summation:

l
vljsin(-'ll{t-x')dx’ = El;cvl(l—cosnn) . (B18)
0

Performing the integration of the third term using integration by parts

2 -
(vz %1 )jx s1n( x)d "= (%) (v2 Ul) [-nmcosnn] . (B19)

l




Then
)

v —
J[f(x') = (v + 2l lx')]sin(E;—tx') dx'
0
! nnx' l
= Z‘)'f(x)sm(—l—-x)dx -—[ﬁvl(l—cosnn)
2 Vy-V
—(;l%) ( 2l 1) [nncosnn]]
! nnx' l
= gf(x)sm(Tx)dx - [Evl-ﬁvlcosnn
--l—v cosn1t+—£—v cosnn]
nn 2 nm 1 > (B20)
or
L v2—vl nr
j[f(x') - (v1+——l——x')]sin(—7—x')dx'
0 A
= f(x') sin (ﬂ;—x—x') dx' - Hl'ﬁ (vy-vycosnm)
(B21)
and Equation (B17) becomes
n21t2
_ Vy—U; 2 & . nm _KTtl . nmx' ) ds'
D= —T—x+] Y s1n(—z—x)e Jf(x)sm(—-l—x x
n=1 0
Vo, COSNT — U
A 1)J . (B22)
T n
or
n’n?
o0 -Kk—i
Vo—V . nm 2 (VgcoSnT—1v,)
v =0+ 2l 1x+% Y s1n(-l—x)e l —
n=1
n’n?
2 - nm _K—?—tl . oonmx', .,
+7 2_: sm(Tx)e jf(x)sm(——l—x)dx .
"= 0 (B23)
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For the case of a “hot” boundary where
x=1,vy=V,
f(x) =0at t=0,

the above equation reduces to

n21t2
\ 4 2v = ar ¥ 2 fcosnm
=_90 _90 in (—— l
v = lx+ - 2s1n(lx)e =
n=1
n2n?
V > n et
= 2 (- 1) s1n('—li1—tx)e ! (B25)

For the two dimensional diffusion problem with the conditions
-l ,sx<l, , —lySySly

v=Ff(x,y)=V, at t=0 (B26)
v=0atx=-l,1 ,y= —ly,ly (t=20) ,

the analytic solution is given by [60]

v(x,5.t) = V¥l )¥(©.1,1)

where ¥ (2,1, t) is the relevant one dimensional solution:

> _ 2,2, /472
¥z lt) = 2 (( n* o KC@r Pl (2n+D)mz (B27)

2n + 1) 21

The general one dimensional diffusion solution, Equation (B23), and the two
dimensional diffusion solution of Equation (B27) have been incorporated into
two computer programs which are listed on the following pages. These pro-
grams were used to find analytic solutions for a given set of initial conditions
at specific times. These solutions were then used to benchmark the radiation

diffusion portion of the MACH2 code.
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program dift
E 3
* This program determines radiation energy distributions for given
* jnitial conditions resulting from one dimensional radiation flows.
%
* radtest = hotsrc ---> box=eradi, walls=0
* radtest = hotwall ---> 1 wall=eradi, box & other wall=0
* radtest = coldwall ---> 1 wall=0, box & other wall=eradi
10 *radtest = inslbdry ---> 1 wall insl, box=eradi, other wall=eradb

11

OO0 0k WN =

12 real*8 kappa, lbox, xmin, xmax, xstep, tval, xval,
13 % tradi, eradi, pi, steph, eval, num1, num2, sum
14 character*8 radtest, input, outfile

15 namelist /input/ radtest,kappa,lbox,nmax,xmin,xmax,xstep,tval
16 % ,tradi, outfile

17

18 c-----set default values for various parameters
19 kappa = 10.0

20 lbox = 2.0

21 nmax = 100

22 xmin = 0.0

23 xmax = 2.0

24 xstep = 0.5

25 tradi = 10.0

26 c-----read in any change in above parameters
27c¢

28 ¢ input data from file

29¢

30 open(8 file="dft.inp’,status="old’)

31 read(8,input)

32 open(12 file=outfile,status="unknown’)
33 close(12,status="delete’)

34 open(12 file=outfile,status="new’)

35¢

36 steph = 13.7191558

37 pi=4.0 * atan(1.0)

38 eradi = steph * tradi*tradi*tradi*tradi
39 imax = int((xmax-xmin)/xstep) + 1

40

41 if ( radtest .eq. “hotsrc “ ) then

42 c----—--- calculations for hot source problem

43

44 ; xval = xmin

45 do 10 i=1,imax,1

46 sum = 0.0
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47 do 20 n = 1,nmax,1

48 numl = 2.0*real(n-1) + 1.0
49 num2 = num1*pi/lbox
50 sum = sum + (1.0/num1) * sin((num1*pi)*(xval/lbox))
51 % * exp(-kappa*num2**2*tval)
52 20 continue
53 if (abs(sum) .It. 1.0d-3) sum = 0.0
54 eval = (4.0*eradi/pi)*sum
55
56 ¢ print out formatted values of x, eval, and t
57
58 print 200, xval, eval, tval
59 write(12,300) xval, eval
60 xval = xval + xstep
61 10 continue
62
63 elseif ( radtest .eq. “hotwall” ) then
64 c------- calculations for hot wall problem
65
66 xval = xmin
67 do 30 i=1,imax,1
68 sum = 0.0
69 do 40 n = 1,nmax,1
70 numl = real(n)*pi/lbox
71 num?2 = dsin(num1*xval)
72 if (abs(num?2) .1t. 1.0d-2) num2 = 0.0
73 sum = sum + dcos(n*pi)/real(n)*num2*
74 % exp(-kappa*num1*num1l*tval)
75 40 continue
76 eval = (eradi/lbox)*xval + (2.0%eradi/pi)*sum
77 if (eval .1t. 1.0d-1) eval = 0.0
78¢ print out formatted values of x, eval, and t
79
80 print 200, xval, eval, tval
81 write(12,300) xval, eval
82
83 xval = xval + xstep
84 30 continue
85
86 elseif ( radtest .eq. “coldwall” ) then
87¢------- calculations for cold wall problem
88
89 xval = xmin
90 do 50 i=1,imax,1
91 sum = 0.0
92 nsum = 0.0
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93 do 60 n = 1,nmax,1

94 numl = real(n)*pi/lbox

95 num?2 = (2.0*real(n-1)+1.0)*pi/lbox

96 sum = sum + cos(n*pi)/real(n)*sin(num1*xval)*
97 % exp(-kappa*num1**2*tval)

98 nsum = nsum + 1.0/(2.0*real(n-1)+1.0)*sin(num2*xval)
929 % *exp(-kappa*num2**2*tval)

100 60 continue

101 if (abs(sum) .1t. 1.0d-6) sum = 0.0

102 if (abs(nsum) .1t. 1.0d-6) nsum = 0.0

103 eval = (eradi/lbox)*xval + (2.0*eradi/pi)*sum+
104 % (4.0*eradi/pi)*nsum

105

106 c¢ print out formatted values of x, eval, and t

107

108 print 200, xval, eval, tval

109 write(12,300) xval, eval

110

111 xval = xval + xstep

112 50 continue

113

114 elseif ( radtest .eq. “inslbdry” ) then

115 c------- calculations for one boundary insulated

116

117 xval = xmin

118 do 70 i=1,imax,1

119 sum = 0.0

120 do 80 n = 1,nmax,1

121 numl = 2.0*real(n-1)+1.0

122 num?2 = (num1*pi)/(2.0*lbox)

123 sum = sum + (eradi*(-1.0)**(n-1) + eradb*(-1.0)**n)
124 % *cos(num2*xval)/num1* exp(-kappa*num2**2*tval)
125 80 continue

126 if (sum .1t. 1.0d-6) sum = 0.0

127 eval = eradb + (4.0/pi)*sum

128

129 xval = xval + xstep

130 70 continue

131

132 else

133 goto 500

134 500 endif

135 200 format(lx,e13.8,3x,e13.8,3x,e13.8)
136 300 format(1x,e13.8,3x,e13.8)

137 end
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1

2 program dif2t

3 %

4 * This program determines radiation energy distributions for a finite
5 * rectangle with surfaces kept at zero and a given initial constant

6 * temperature in the box.

7 *

8 real*8 kappa, Ixbox, lybox, xmin, xmax, xstep, tval, xval,
9 % tradi, eradi, pi, steph, numl, num2, vals, sum1, sum2,
10 % evall, eval2, eval

11 character*8 input, outfile

12 namelist /input/ kappa,lxbox,lybox,nmax,xmin, xmax,xstep,ymin
13 % ,ymax,ystep,tval,tradi,outfile
14

15 steph = 13.7191558

16 c-----set default values for various parameters

17 kappa = 100.0

18 Ixbox = 1.0

19 lybox = 1.0

20 nmax = 20

21 xmin =-1.0

22 xmax = 1.0

23 xstep=.5

24 ymm =-1.0

25 ymax = 1.0

26 ystep = .5

27 tval = 1.0

28 tradi = 10.0

29 c-----read in any change in above parameters

30c

31 c input data from file

32¢

33 open(8,file="dft2.inp’,status="o0ld’)

34 read(8,input)

35 open(12,file=outfile,status="unknown’)

36 close(12,status="delete’)

37 open(12 file=outfile,status="new’)

38¢c

39 pi = 4.0 * atan(1.0)

40 eradi = steph * tradi*tradi*tradi*tradi

41 imax = int((xmax-xmin)/xstep) + 1

42 jmax = int((ymax-ymin)/ystep) + 1

43

44 xval = xmin

45 do 10 i=1,imax,1

46 suml = 0.0
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47 do 20 n=1,nmax,1
48 c-- compute series for xval

49 numl = 2.0*real(n-1) + 1.0

50 num2 = numl * pi/(2.0*Ixbox)

51 vals = dcos(num2*xval)

52 if (vals .It. 1.0d-2) vals = 0.0

53 suml = sum1 + dcos((n-1)*pi)*(vals/num1)
54 % *exp(-kappa*num2*num2*tval)
55 20 continue

56 evall = (4.0/pi)*suml

57 yval = ymin

58 do 30 j=1,jmax,1

59 sum?2 = 0.0

60 do 40 n=1,nmax,1

61 c-- compute series for yval

62 numl = 2.0*real(n-1) + 1.0

63 num?2 = numl * pi/(2.0*lybox)

64 vals = dcos(num2*yval)

65 if (vals .1t. 1.0d-2) vals = 0.0

66 sum2 = sum2 + dcos((n-1)*pi)*(vals/num1)
67 % *exp(-kappa*num2*num2*tval)
68 40 continue

69 eval2 = (4.0/pi)*sum2

70 eval=eradi*evall*eval2

71c

72 ¢ print out formatted values of x, y, eval

73 c

74 print 200, xval, yval, eval

75 write(12,200) xval, yval,eval

76

77 yval = yval + ystep

78 if (abs(yval) .1t. 1.d-3) yval=0.0

79 30 continue

80 xval = xval + xstep

81 if (abs(xval) .1t. 1.d-3) xval=0.0

82 10 continue
83 200 format(1x,e13.6,3x,e13.6,3x,e13.8)
84 end
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APPENDIX C: CONSERVING ENERGY IN THE STAGNATION PROBLEM

The earliest calculations of the stagnation process, including that of the
baseline case, indicated that the total energy of the system was not conserved
throughout the simulation; energy losses of up to 30 % were observed in some
instances. As a result, the radiation production was proportionally lower in
these calculations. It was suggested [64] and later confirmed that this loss
occured during the transport in the stagnation region and was related to the
fact that the internal energy, and not the total energy, was transported in
these calculations. This loss was also observed in simpler problems, where
large gradients in velocity were present and the radiation physics and mag-
netic fields were excluded, i.e, shock tube, pressure pulse.

One way to overcome this problem, is to transport the total energy rather
than the internal energy, thus forcing the total energy to be conserved [65].
This option is available in MACH2 and can be carried out by setting the input
parameter conserv to a value of 1. With this option, the total energy, which
includes the electron specific internal energy, the ion specific internal energy,
the magnetic energy and the kinetic energy, is advected. After this and all
other fundamental quantities have been transported, new values of magnetic
energy and kinetic energy are determined from the advected momentum and
magnetic fluxes. These new energies are then substracted from the advected
total energy to yield a new electron plus ion specific internal energy. In this
way, any energy loss which is introduced by advecting momentum and mag-
netic flux, as opposed to transporting the energies themselves, is added back
into the electron fluid as internal energy.

Figure c1 shows the total energy and radiated power as a function of time

for both the total energy scheme (conserv = 1) and the transport of the internal
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energy only (conserv = 0) for the baseline case. Here the total energy in Figure
cl (a) includes the energy lost by radiation leaving the system through the bot-
tom boundary of the computational domain. Clearly, these figures illustrate
the significant energy loss that can occur in this problem and the improvement
which results from using the total energy, or conservative, scheme. A compari-
son of the two calculations indicates that in the non-conservative case, the
peak radiation rate drops by approximately 50 % from that of the conservative
case, and the total radiated yield at 10 ns is only 3.2 MJ, a conversion efficiency
of 64 %. In the conservative case, the total energy remains within +2 % of its
original value. Based on this analysis, all the calculations presented in this
dissertation used the total energy transport option. A more detailed discussion
of this problem and an estimate of kinetic energy loss during transport can be

found in [34].
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5 MJ CT: Total Energy vs. Time with conserv off, on
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5 MJ CT: Radiation Rate vs. Time with conserv off, on
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Figure C.1. Plots of (a) the total energy (including radiation energy leaving
the bottom boundary of the problem) vs. time and (b) radiated power
(radiation rate) vs. time for the baseline 5 MJ calculation.
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